Terapeutická a protetická technika

Garant předmětu:

Autoři textu:

Brno 20.11. 2002
Obsah

1 **ÚVOD** .. 6

2 **ZAŘAZENÍ PŘEDMĚTU VE STUDIJNÍM PROGRAMU** .. 7

2.1 **ÚVOD DO PŘEDMĚTU** .. 7
2.2 **VSTUPNÍ TEST** .. 7

3 **ELEKTRICKÁ STIMULACE TKÁNÍ** .. 8

3.1 **KARDIOSTIMULÁTORY** .. 8

3.1.1 **Rozdělení kardiostimulátorů** .. 9
3.1.2 **Dlouhodobá kardiostimulace** .. 10
3.1.3 **Krátkodobá kardiostimulace** .. 15

3.2 **DEFIBRILÁTORY** .. 16
3.2.1 **Klinické defibriláty** ... 17
3.2.2 **Implantabilní defibriláty** .. 20
3.2.3 **Kardioverze** .. 20

3.3 **NEUROMUSKULÁRNÍ STIMULÁTORY** .. 21

3.3.1 **Rozdělení neuromuskulárních stimulátorů** .. 22
3.3.2 **Biologicky řízené stimulátory** .. 24
3.3.3 **Implantabilní neuromuskulární stimulátory** ... 25

3.4 **UROSTIMULÁTORY** .. 26
3.5 **GASTROSTIMULÁTORY** .. 27

4 **ULTRAZVUKOVÁ TERAPIE, AEROSOLOGIE A CHIRURGIE** ... 28

4.1 **FYZIOLOGICKÉ ÚČINKY VÝKONOVÉHO ULTRAZVSKU** .. 30
4.2 **FYZIKÁLNÍ TERAPIE** ... 31
4.3 **AEROSOLOGIE** .. 33
4.4 **ULTRAZVUKOVÁ CHIRURGIE** .. 34

4.4.1 **Ultrazvuková chirurgie oka** .. 35
4.4.2 **Odstraňování zubního kamene** .. 35
4.4.3 **Ultrazvukové drcení konkrementů** ... 36

5 **VYSOKOFREKVENČNÍ OHŘEV TKÁNÍ, ELEKTROTOMIE** .. 37

5.1 **FYZIOLOGICKÉ ÚČINKY ELEKTROMAGNETICKÝCH POLÍ** ... 38
5.2 **KRÁTKOVLNNÁ DIATERMIE** .. 41
5.3 **VKV A MIKROVLNNÁ DIATERMIE** .. 44
5.4 **ELEKTROTOMIE** .. 45

6 **RADIOTERAPIE NUKLIDY, URYCHLENÝMI ELEKTRONY** ... 48

6.1 **PRINCIPY RADIOTERAPIE** ... 50

6.1.1 **Vnější ozařování** .. 51
6.1.2 **Vnitřní ozařování** .. 55

6.2 **URYCHLOVAČE ELEKTRONŮ** .. 56
6.3 **LEKSELLŮV GAMA NÚŽ** .. 59

7 **KRYOCHIRURGIE** ... 61

7.1 **FYZIOLOGICKÉ ÚČINKY NÍZKÝCH TEPLOT** .. 61
7.2 **TECHNICKÉ ŘEŠENÍ KRYOKAUTERU** .. 64
8 APLIKACE LASERŮ ... 66
 8.1 INTERAKCE LASEROVÉHO SVAZKU S TKÁNÍ 68
 8.2 VLASTNOSTI VYBRANÝCH TYPŮ LASERŮ 69
 8.3 TECHNICKÉ ŘEŠENÍ LASERU .. 71
9 VENTILAČNÍ A ANESTEZIOLOGICKÉ SYSTÉMY 73
 9.1 UMĚLÁ PLICNÍ VENTILACE .. 74
 9.2 INHALAČNÍ ANESTEZIE ... 76
10 PODPORA FUNKCE SRDCE, MIMOTĚLNÍ OBĚH 78
 10.1 PODPORA FUNKCE SRDCE ... 78
 10.2 MIMOTĚLNÍ OBĚH KRVE .. 79
11 PODPORA FUNKCE LEDVIN, HEMODIALÝZA 81
 11.1 HEMODIALÝZA .. 83
 11.1.1 Hemiodialyzační monitor ... 83
 11.1.2 Dialyzátory ... 84
 11.1.3 Dialyzacní roztoky .. 87
 11.1.4 Technické řešení hemodialyzačního systému 88
 11.1.5 Peritoneální dialýza ... 92
 11.2 HEMOFILTRACE .. 92
 11.3 PLAZMAFERÉZA .. 93
12 PODPORA SENZORIKY .. 93
 12.1 PODPORA SLUCHU .. 93
 12.1.1 Sluchadla ... 94
 12.1.2 Kochleární neuroprotézy .. 96
 12.2 PODPORA ZRAKU ... 98
 12.2.1 Zrakové neuroprotézy .. 98
 12.2.2 Umělá sítnice .. 99
13 AUTOMATIZOVANÉ HEMATOLOGICKÉ A BIOCHEM. LABORATOŘE 100
 13.1 BIOCHEMICKÁ LABORATOŘ .. 100
 13.1.1 Spektrofotometr .. 101
 13.1.2 Průtokový cytometr .. 102
 13.2 HEMATOLOGICKÁ LABORATOŘ 103
 13.2.1 Základní vlastnosti krve .. 103
 13.2.2 Počítače krve ... 105
 13.2.3 Kolorimetrické určení obsahu hemoglobinu v krvi 106
 13.2.4 Měření pH krve ... 107
14 POČÍTAČEM PLÁNOVANÁ A ŘÍZENÁ TERAPIE 108
15 KOMPATIBILITA ZAŘÍZENÍ V NEMOCNIČNÍCH SYSTÉMECH 109
 15.1 KOMPATIBILITA PŘENOSU INFORMACÍ 110
 15.1.1 Kompatibilita identifikačních údajů 110
 15.1.2 Kompatibilita přenosu obrazové informace 110
 15.2 KOMPATIBILITA INFORMAČNÍCH SYSTÉMŮ 112
 15.3 BEZPEČNOST PROVOZU ZDRAVOTNICKÉ TECHNIKY 113
Seznam obrázků

OBRÁZEK 3.1: HOORWEG-WEISSOVA KŘIVKA ... 8
OBRÁZEK 3.2: Průběh EKG signálu ... 9
OBRÁZEK 3.3: Blokové schéma kardiostimulátoru on demand 12
OBRÁZEK 3.4: Časové průběhy pro kardiostimulátor on demand 12
OBRÁZEK 3.5: Řez stimulační elektrodou ... 14
OBRÁZEK 3.6: Principiální blokové schéma klinického defibrilátoru 18
OBRÁZEK 3.7: Defibriláční impuls RLC defibrilátoru ... 19
OBRÁZEK 3.8: Oblast selektivního dráždění svalů ... 22
OBRÁZEK 3.9: Rozdělení neuromuskulárních stimulátorů 23
OBRÁZEK 3.10: Polarita stimulačních impulsů ... 23
OBRÁZEK 3.11: Blokové schéma neuromuskulárního stimulátoru 24
OBRÁZEK 4.1: Rozdělení pole ultrazvukového měniče .. 29
OBRÁZEK 4.2: Tepelný reliéf rozhraní tkání .. 30
OBRÁZEK 4.3: Řez ultrazvukovou hlavicí .. 31
OBRÁZEK 4.4: Blokové schéma terapeutického zařízení 32
OBRÁZEK 4.5: Průměr částic aerosolu v zálivosti na frekvenci 33
OBRÁZEK 4.6: Ultrazvukový aerosolátor ... 34
OBRÁZEK 4.7: Nástroj pro odstranění zubního kamene ... 36
OBRÁZEK 5.1: Průběh charakteristické impedance v zálivosti na frekvenci 38
OBRÁZEK 5.2: Oteplení tkání v zálivosti na expozici .. 40
OBRÁZEK 5.3: Frekvenční zálivost absorbovaného výkonu 40
OBRÁZEK 5.4: Srovnání účinků diatermí ... 41
OBRÁZEK 5.5: Relativní oteplení tkání v zálivosti na vzdálenost elektrod 42
OBRÁZEK 5.6: Obvod pacienta ... 43
OBRÁZEK 5.7: Blokové schéma kv diatertime .. 44
OBRÁZEK 5.8: Princip VF chirurgie ... 46
OBRÁZEK 5.9: Blokové schéma elektrochirurgického přístroje 46
OBRÁZEK 6.1: Srovnání svazků záření .. 52
OBRÁZEK 6.2: Parametry dávky v zálivosti na hlooubé ... 53
OBRÁZEK 6.3: Popis svazků při hlooubkovém ozárovaní 53
OBRÁZEK 6.4: Srovnání distribuce dávky různými technikami ozárovaní 54
OBRÁZEK 6.5: Izodozní křivky RTG záření .. 54
OBRÁZEK 6.6: Blokové schéma lineárního urychlovače ... 58
OBRÁZEK 6.7: Profily dávek pro koncové kolimátory (v helmici) 60
OBRÁZEK 6.8: Schématický řez kolimačním kanálem ... 60
OBRÁZEK 6.9: Schématický řez radiační jednotkou LGN 61
OBRÁZEK 7.1: Typický průběh teploty při kryodestrukci 62
OBRÁZEK 7.2: Průběhy rychlosti zmrzování ... 63
OBRÁZEK 7.3: Hlooubka zmrzlené tkánie v zálivosti na teplotě a času 63
OBRÁZEK 7.4: Autonómní kryochirurgický systém ... 65
OBRÁZEK 7.5: Blokové schéma elektronické jednotky kryokautéru 66
OBRÁZEK 8.1: Optické okno kúže .. 69
OBRÁZEK 8.2: Principiální sestava laseru ... 72
OBRÁZEK 9.1: Ventilační křivky ... 73
OBRÁZEK 9.2: Blokové schéma ventilátoru ... 75
OBRÁZEK 9.3: Blokové schéma systému inhalací anestezie 77
OBRÁZEK 10.1: Princip intraaortální balónkové kontrapulsace 79
OBRÁZEK 10.2: Mimitelní oběh ... 80
OBRÁZEK 11.1: Rozdělení hemodialýzačních postupů ... 83
1 Úvod

Aplikace elektroniky, automatizovaných systémů měření a řízení, informačních systémů, stejně jako komunikačních systémů a počítačových sítí, se v posledních deseti letech staly samozřejmou a nezbytnou součástí většiny diagnostických i terapeutických komplexů. Je proto pochopitelné, že se oblasti biomedicínských systémů věnuje odpovídající pozornost i v bakalářském studiu na Fakultě elektrotechniky a komunikačních technologií.

Rozsah a různorodost aplikací elektronických systémů a rychlé zavádění nových technologií do praxe se promítá i do užití a modernizace technických systémů v jednotlivých klinických oborech. S ohledem na tuto skutečnost není účelné uvádět detailní popisy jednotlivých typů zařízení a přístrojů. Předmět je proto zaměřen na systémová řešení a orientován na popis základních fyzikálních principů v jednotlivých aplikačních oborech.

Účební text připravil garant předmětu ve spolupráci s Doc.Ing. Milanem Chmelařem,CSc (kapitola 13) a Ing. Karlem Jehličkou,CSc (kapitola 15)
2 Zařazení předmětu ve studijním programu

Předmět Terapeutická a protetická technika je zařazen ve studijním programu bakalářského studia Elektrotechnika, elektronika, komunikační a řídící technika jako volitelný ve 3. ročníku, letním semestru.

V rámci výkladu se předpokládá, že student již získal základní znalosti z analogových i číselcových obvodů, elektrotechnických i elektronických měření, teorie elektromagnetického pole, zpracování signálů a aplikací výpočetní techniky. Nezbytným předpokladem pro chápání výkladu v tomto předmětu jsou však základní znalosti o stavbě a funkcii lidského těla – vědomosti z anatomie a fyziologie člověka.

2.1 Úvod do předmětu

Cílem předmětu je seznámení s principy a základním konstrukčním řešením přístrojů využívaných v terapii, chirurgii, náhradě orgánů a automatizovaném provozu nemocničních systémů. Výklad je orientován zásadně na systémová řešení přístrojů a zařízení, protože detailní obvodová řešení jsou závislá na užitých technologiích a součástkové základně.

Vzhledem k tomu, že osnova předmětu je zaměřena na aplikace fyzikálních polí a elektronických systémů v terapeutické, chirurgické a protetické technice, získají studenti základní vědomosti z této oblasti aplikací techniky v lékařství. Technický personál na klinických pracovištích je a bude i nadále nepostradatelný.

2.2 Vstupní test

Jedním z předpokladů pro úspěšné zvládnutí – pochopení výkladu v tomto předmětu jsou základní znalosti z anatomie a fyziologie člověka. Tyto vědomosti a odpovídající informace získají studenti samostatným studiem z doporučené literatury. Případné neznalosti budou řešeny přímo při výkladu. Vstupní test bude připraven až podle potřeby vyplývající z reakcí studentů na přednáškách.
3 Elektrická stimulace tkání

Obrázek 3.1: Hoorweg-Weissova křivka

Pokud se jedná o srdeční sval, rozlišujeme tři zásadní typy stimulací:
1. kardiostimulace,
 kdy je nahrazována porucha rytmické funkce,
2. kardioverze,
 kdy je rušena porucha srdečního rytmu,
3. defibrilace,
 kdy je rušena fibrilace komor.

3.1 KARDIOSTIMULÁTORY

Srdce je schopno vytvářet a věst vzruchy způsobující koordinované a rytmické kontrakce srdečních svalových vláken. Tvorba a převod elektrických vzruchů se realizuje srdečním převodním systémem. Následky poruchy převodního systému lze korigovat elektrickou stimulací. Srdeční převodní systém je tvořen sinoatriálním uzlem (SA), vnitřními síhovými drahami, atrioventrikulárním uzlem (AV), Hisovým svazkem, pravým a levým Tawarovým raménkem a Purkyňovými vláky, [35], [37].
Rytmičtí vzruchy řídící činnost srdece mohou vznikat nejen v SA uzlu, ale i v dalších centringách převodního systému. Řízení srdece přebírá centrum, které generuje vzruch s nejvyšší frekvencí. V klidu jsou to hodnoty: SA uzel 70 tepů za minutu, AV uzel 50÷60 tepů za minutu, komorová centra 25÷45 tepů za minutu.

Obrázek 3.2: Průběh EKG signálu

Smyslem kardiostimulace je maximální přibližení k normální funkci srdece. Při komplet- ním AV bloku je vedení vzruchů mezi síněmi a komorami zcela přerušeno a síně i komory pracují nezávisle. Dochází ke zpomalení až zastavení činnosti komor. Ke kardiostimulaci jsou zpravidla využívány obdélníkové stimulační impulsy s aktivní elektrodou tvořenou katodou stimulačního obvodu. V tomto případě je práh podráždění nižší [37]. Stimulační elektrody myokardiální lze v současné době aplikovat bez otevření hrudníku. Pro trvalou kardiostimulaci se stimulátor implantuje.

Pro správné chápání dalšího výkladu je třeba připomenout průběh EKG signálu s odpovídajícími časovými úsekty typických vln. Na Obrázek 3.2 je naznačen normální průběh EKG signálu z II. standardního končetinového svodu.

3.1.1 Rozdělení kardiostimulátorů

Kardiostimulace slouží k nápravě bradycardii (někdy i tachycardii) způsobených:
- přerušením sínko-komorového vedení při infarktu myokardu (IM),
- situací, kdy sinoatriální uzel neplní funkci "pacemakeru".

Využívá se proto dráždění myokardu elektrickými impulsy s nadprahovou energií, které jsou vhodné časově voleny s ohledem na průběh EKG signálu.
Systematické třídění kardiostimulátorů je možné z mnoha hledisek. Zásadní dělení je podle:

a) doby trvání stimulace
dočasná (klinické) a trvalá (implantabilní),
b) způsobu dráždění
- přímé: endokardiální, myokardiální, epikardiální,
- nepřímé: hrudní, jíčkový,
c) funkce stimulátoru
neřízené, řízené a programovatelné,
d) počtu ovládaných srdečních dutin
jedno a dvoudutinové,
e) typu stimulačních elektrod
unipolární (záporný pól), bipolární,
f) typu napájení stimulátoru
bateriové nebo vysokofrekvenčně buzené.

Tabulka 3.1: NBG kód kardiostimulátorů

<table>
<thead>
<tr>
<th>1. znak</th>
<th>2. znak</th>
<th>3. znak</th>
<th>4. znak</th>
<th>5. znak</th>
</tr>
</thead>
<tbody>
<tr>
<td>místo stimulace</td>
<td>místo snímání</td>
<td>způsob stimulace</td>
<td>programovatelnost</td>
<td>antiarytmická funkce</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>O</td>
<td>P</td>
<td>jednoduché</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>I</td>
<td>M</td>
<td>multiprogramovatelný</td>
</tr>
<tr>
<td>D (A+V)</td>
<td>D (A+V)</td>
<td>I</td>
<td>C</td>
<td>komunikovatelný</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>D (T+I)</td>
<td>R</td>
<td>frekvenčně adaptabilní</td>
</tr>
</tbody>
</table>

3.1.2 Dlouhodobá kardiostimulace

Pro dlouhodobou kardiostimulaci jsou v současné době využívány implantabilní kardiostimulátory jak řízené, tak programovatelné.

Za dobu téměř 40 let doznal vývoj implantabilních kardiostimulátorů díky aplikovaným novým technologiím podstatných změn. Z dřívějších jednokomorových, asynchronních, neprogramovatelných stimulátorů s hmotností 250 g (1960) je dnes možné implantovat kardiostimulátory dvoudutinové, multiprogramovatelné s diagnostickou funkcí i sběrem dat. Hovoříme o fyziologické kardiostimulaci - přizpůsobené nárokům pacienta. Stimulátory mají výjimečnou spolehlivost, hmotnost 25 g a životnost díky lithiovým bateriím větší než 10 let, [2].
Neřízená kardiostimulace

Jedná se o stimulátory s pevnou opakovací frekvencí a šíří impulsů, přibližně 1 Hz a 1,2 až 1,5 ms. Konstrukčně jsou nejednodušším typem. Aplikovaly se výhradně při chronické AV blokádě pro obnovení spontánního srdečního rytmu. Stimulátor řídí pouze činnost komor, síně tepou vlastním rytmem. Proto je stimulace označována za asynchronní. Interferencí činnosti stimulátoru s obnovenou spontánní aktivitou mohou být vyvolány salvy extrasystol, komorová tachykardie či fibrilace komor. Stimulační impuls proto nesmí být aplikován ve vulnerabilní fázi EKG signálu (vzestupné rameno T vlny), [17], [37].

Řízená kardiostimulace

Tato stimulace, označovaná jako synchronní, využívá k řízení generátoru impulsů P nebo R vlnu EKG signálu. Stimulátory mohou pracovat jako inhibované nebo spouštěné těmito vlnami.

Kardiostimulace řízená P vlnou

Stimulátor nahrazuje narušený srdeční převodní systém při normální činnosti síní. Využívá tři elektrody. Jedna elektroda je umístěna v síní a snímá P vlnu. Po odpovídajícím časovém zpoždění (asi 160 ms) je druhou elektrodou vyslán do komor stimulační impuls. Třetí elektroda je společná pro snímání i stimulaci a je umístěna na stimulátoru. Synchronní činnost síní a komor zachovává fyziologické řízení srdeční frekvence odpovídající námaze. Při poklesu frekvence síní pod jistou minimální mez pokračuje stimulátor v asynchronní stimulaci komor s touto minimální frekvencí. Při vysoké frekvenci síní se uplatní refrakterní doba stimulátoru (doba necitlivosti k detekci EKG) a komory jsou stimulovány bezpečnou, např. poloviční frekvencí síní. Tento typ kardio stimulátoru se aplikuje jen výjimečně, jeho náhradou jsou dvoudutinové – bifokální – stimulátory, [37], [14].

Kardiostimulace řízená R vlnou – inhibovaná

Hlavní předností tohoto stimulátoru je zamezení možnosti interference rytmů. Pro kontrolu frekvence generovaných impulsů mají stimulátory zabudované magneticky ovládané spínače. Vnějším magnetem lze vyřadit z činnosti inhibiční obvody a stimulátor potom pracuje jako neřízený s pevnou (vyšší) frekvencí, [37].

Kardiostimulace řízená R vlnou – spouštěná

Tento stimulátor, označovaný také jako stand by, je okamžitě spouštěn každou R vlnou EKG signálu. Stimulační impuls (asi 1,5 ms) časově zapadá do QRS komplexu (zhruba 80 ms) a tím nezpůsobí další kontrakci. Přichází totiž do absolutně refrakterní fáze spontánně depolarizovaného myokardu. Při snížení frekvence spontánní činnosti pod nastavenou
minimální hodnotu je vyslán funkční stimulační impuls. Při zvýšení frekvence nad zvolenou maximální hodnotu je stimulátor spouštěn jen každou druhou nebo třetí R vlnou. To je dáno refrakterní dobou stimulátoru. Výhodou tohoto stimulátoru je omezení vzniku interference rytmů a možnost zvyšování frekvence externím zdrojem impulsů. Nevýhodou je větší spotřeba energie a zatižení tkáně, [37].

Obrázek 3.3: Blokové schéma kardiostimulátoru on demand

Obrázek 3.4: Časové průběhy pro kardiostimulátor on demand

Dvoudutinová kardiostimulace

Stimulátory tohoto typu, označované někdy také jako bifokální, jsou tvořeny dvěma bloky typu on demand, řízenými komorovou aktivitou. Jeden blok stimuluje síně, druhý komory. Inhibiční interval bloku pro síně je kratší oproti inhibičnímu intervalu pro komory o dobu fyziologického zpoždění vzruchu šířícího se ze síní do komor (A-V zpoždění či zpoždění P-R).

Programovatelná kardiostimulace

Rozvoj technologie integrovaných obvodů umožnil i vývoj nových typů a provedení kardiostimulátorů. Některá provedení umožňují nejen měnit parametry stimulace, ale i telemetricky přenášet data.

Adaptabilní kardiostimulátory

Programovatelné stimulátory umožňují i po implantaci dálkovým řízením (telemetricky) programátorem reversibilně měnit funkční parametry stimulace, získávat diagnostická funkční data a provádět neinvazivní testy. Jedná se tedy o přizpůsobení funkce stimulátoru fyziologickým požadavkům pacienta a také o úsporu energie a tím i prodloužení jeho životnosti.

Řada těchto stimulátorů umožňuje změnit nejen parametry výstupních stimulačních impulsů, ale také svou funkci tak, že přechází na jiný druh stimulace. Do interní paměti se ukládají údaje o počtu inhibicí, počtu stimulací po spontánním QRS komplexu, počtu a typu arytmii ap. Tato data jsou obousměrným vřenosem přenesena do střediska a vytíštěna ve formě protokolu, [2], [14].

Formu přizpůsobené – fyziologické stimulace realizuje řada dvoudutinových stimulátorů reagujících na fyzickou zátěž pacienta. Ta je registrována nejvícejšími typy elektrody, snímačů a biosenzorů. Sleduje se tak impedance hrudníku (dechová frekvence, minutový respirační objem), infravukové frekvence (činnost kosterního svalstva), svalová aktivita, saturace venozní krve kyslíkem, teplota, pH krve, [14], [35].

Kardiostimulátor s defibrilátorem

Nová generace stimulátorů spojuje funkci programovatelného kardiostimulátoru, diagnostického monitoringu a defibrilátoru. Aplikuje se pacientům s prokázaným rizikem náhleho selhání při tachyarytmích. Prozatím se jedná o technicky nejsložitější implantát, [14].

Provedení implantabilních kardiostimulátorů

Elektronická část

Moderní implantabilní kardiostimulátory se skládají ze tří funkčních částí. Jsou to:
- generátor stimulačních impulsů včetně baterie a obvodů snímání elektrické aktivity srdce,
- stimulační elektrody s vodiči,
- programátor – součást telemetrického zařízení k přenosu dat.
Generátor stimulačních impulsů je tvoren vlastním generátorem zpravidla obdélníkových impulsů, výstupním obvodem, baterií a obvody snímače. Současné stimulátory využívají CMOS technologie obvodů. Paměti ROM (1÷2 kB) jsou využívány k přímému výstupu a pro obvody snímání, RAM (16÷512 B) slouží k ukládání diagnostických dat. Hermeticky utěsněné titanové pouzdro má na vnější straně popis laserem uvedející jméno výrobce, typ stimulátoru, číslo modelu a série, zapojení vodičů, [2].

Programátor u těchto obvodů slouží nejen ke změně funkčních parametrů, ale také k přenosu diagnostických dat. Je součástí telemetru pracujícího v obou směrech na frekvenci 300 Hz, [2].

Stimulační elektrody

Stimulační elektrody pro implantabilní aplikace tvoří komplet sestávající z vlastní elektrody (hrotu), propojovacího vodiče, izolace a konektoru. Požadavek několikaleté bezchýbné funkce, mechanické namáhání (ohyby) vodiče a umístění v agresivním prostředí tělních tekutin klade nároky na konstrukční provedení a výběr materiálu.

![Stimulační elektrody](image)

Obrázek 3.5: Řez stimulační elektrodou

Komplet stimulační elektrody může být v provedení polotuhém nebo plovoucím, jako unipolární či bipolární. Zavádí se na malém chirurgickém sále pod RTG zobrazením žilní cestou do hrotu pravé komory. Vlastní stimulační elektroda (hrot) má plochu 8÷12 mm^2 s minimálním zaoblením hrany. Použitím materiálem bývá Pt – Ir, někdy Au, nejčastěji slitina Epilog (Co, Fe, Ni, Cr, Mo, Mn). Klasické provedení představuje „pórovitý“ terčík (pory ∅ 20÷100 μm), který zarůstá do tkáně. Nová řešení využívají steroid (1 mg kortikosteroidu) aplikovaný do komůrky v hrotu elektrody, sloužící k pomalému pronikání do myokardu a redukující tak zánět vznikající po fixaci elektrody. Zpomalí také růst fibrozního vaku, který se formuje kolem elektrody. Schematický řez takovým provedením je na Obrázek 3.5., [2].

Propojovací vodič mívá průměr 4÷6 F (kde F=0,33 mm). Délka vodiče se volí pro trvalou implantaci 65 cm, pro dočasnou 100 cm. S ohledem na zmíněné mechanické namáhání je vodič zpravidla řešen jako čtyřchodová kovová spirála se speciální izolací. Kovem bývá slitina niklu označovaná MP35N, izolací silikonový kaučuk a polyuretan. Při zavádění bývá komplet stimulační elektrody vyztužen ocelovým vodičem, [2].

Napájení

Napájení implantabilních kardiostimulátorů je principiálně možné vysokofrekvenčně z vnějšího zdroje nebo baterií umístěnou v pouzdře stimulátoru. Zásadním požadavkem je nezávislost na vnějších zdrojích po teoreticky neomezeně dlouhou dobu. Proto se již řadu let využívají primární nebo sekundární články. S ohledem na požadovanou životnost (7÷10 let) se klade důraz na malý samovybíjecí proud, co největší kapacitu vztaženou na objem zdroje, optimální vybíjecí charakteristiku a možnost hermetizace. Po mnoho let byly využívány rtuťové články, které měly svorkové napětí 1,35 V, kapacitu 1÷1,8 Ah, samovybíjecí proud 10÷23 µA a životnost cca 3 roky, [14]. Jejich závažným nedostatkem však bylo uvolňování plynu (vlivem chemických reakcí), který bylo nutné jímat absorbérem.

V současné době se užívají výhradně lithium-jodídové články, které mají až 15-letou životnost. Kapacita takové baterie bývá 0,8÷3 Ah, svorkové napětí 2,8 V. Životnost baterie je samozřejmě závislá na technických parametrech stimulátoru: šíři a velikosti stimulačního impulsu, počtu stimulovaných dutin, stimulačním poměru, statickém proudovém odběru atd. Pokles na 2,4 V odpovídá 90 % užitečné doby života, při vybití klesne na 1,8 V. Vnitřní odpor baterie se pak zvětší z 10 na 40 kΩ, [2].

3.1.3 Krátkodobá kardiostimulace

Kardiostimulátory pro krátkodobou aplikaci členíme na stimulátory:
- pro dočasnou stimulaci,
- diagnostické,
a dále pro stimulaci
 - přímou,
 - nepřímou.

Dočasná stimulace srdece se využívá jako forma intenzivní péče při normalizaci rytmu jak u bradykardií, tak tachykardií. Často se aplikuje i před implantací trvalého kardiostimulátoru. Jedná se o univerzální typ stimulátoru umožňující nastavit nejvíce variant pracovních režimů. Při bradykardiích je nejčastěji využíván režim inhibovaný R vlnou. Při tachykardiích, kdy je defibrilace kontraindikována, jsou využívány metody zpomalování rytmu jako např. párová synchronizovaná stimulace, [17], [37].

Dočasná kardiostimulace může být provedena jako přímá stimulace zavedenou stimulační elektrody do myokardu nebo jako nepřímá stimulace transtorakální či transesofageální. Technické parametry kardiostimulátorů pro přímou stimulaci jsou obdobné jako u implantabilních. Pro nepřímou transtorakální stimulaci se užívají dvě elektrody přiložené na hrudník. Stimulační impulsy mají velikost 30÷120 V, šíře impulsů 3 ms. Zásadně jsou však bolestivé a stimulace může vyvolat fibrilaci komor. Při transesofageální stimulaci je bipolární stimulační elektroda zavedena do jícnu. Stimulační
impulzy mají velikost 30÷90 V, šíře impulšů 1,5 ms, [17]. U obou typů externích kardiostimulátorů bývá nastavitelná frekvence 40÷250 tepů/min. a A-V zpoždění 20÷450 ms.

3.2 DEFIBRILÁTORY

Základem mechanické činnosti srdce je stah sválových vláken, který tvoří na stěnách síní i komor vlnu postupující cirkulárně jako fronta stejným směrem, jakým je z dutiny vypuzována krev. Koordinovaný vznik a šíření vlny zajišťuje převodní systém. Synchronizovaný přenos podráždění (vzruchů) se projevuje nejen elektricky (EKG signál), ale i mechanicky. Důkazem je koordinovaná činnost srdečních síní i komor.

Defibrilace je posledním zásahem pro obnovu oběhu krve. Pokud nedošlo k zastavení dýchání, je nutné do 1 minuty defibrilovat, jinak se zavádí komplexní kardiopulmonální resuscitace. Fibrilace síní se neprojevuje příliš významně na celkovém výkonu srdce. Proto je pořád: obnova činnosti komor – defibrilace, obnova činnosti síní – kardioverze, [17], [37].

Defibrilaci dělíme na:

- přímou,
- nepřímou.

Přímá defibrilace se aplikuje přímo na srdeční buď při kardiochirurgických výkonech nebo v traumatologii. Předpokladem je provedení torakotomie (otevření hrudní stěny). Relativně málo invazivní formou přímé defibrilace znamenalo zavedení implantabilních defibrilátorů. Přímou defibrilaci při chirurgických výkonech je nutné provádět kvalitními (miskovými) elektrodami zainstalovaným implantabilním defibrilátorem, který nemusí mít velkou energii impulsu, nemusí mít synchronizaci a kontrolu defibrilace vlastním kardioskopem, není objemově limitován. O provedení implantabilních defibrilátorů je pojednáno v kap. 3.2.2.

Nepřímá defibrilace je urgentním výkonem při neodkladné péči jak v terénu, tak na koronárních jednotkách. Elektrody se přikládají na hrudník tak, aby proud zasáhl největší část srdce – pod jugulární jamkou (horní konec hrudní kosti) a levou prsní bradavkou. Kromě kvalitních elektrod musí mít defibrilátor dostatečně velkou energii impulsu, kontrolu defibrilace vlastním kardioskopem, indikaci velikosti proudu a energie, [37].

Z hlediska provedení a technického řešení dělíme defibrilátoru na:

- nízkonapěťové,
- vysokonapěťové,
- synchronizované,
- nesynchronizované,
- klinické,
- implantabilní.
3.2.1 Klinické defibrilátory

Klinické defibrilátory, které můžeme označit také jako externí defibrilátory, se užívají jak k přímé, tak nepřímé defibrilaci. Systémové řešení obou typů defibrilátorů je podobné, liší se jen konstrukčním provedením, aplikovanou velikostí energie a tvarem elektrod.

Defibrilačním impulsem může být z elektrofyzioologického hlediska každý impuls, který bude do kardiace až do kladu, kde se potenciál dovolnou vrcholovou hodnotou proudu. Tvar užitého impulsu však rozhoduje o tom, zda defibrilace bude dosaženo s největší účinností a nejmenším poškozením srdeční tkáň.

Vzhledem k tomu, že poškození tkání srdce je tím větší, čím vyšší proud jimi protéká, má být defibrilace dosažena s nejmenší možnou vrcholovou hodnotou. Energie příliš širokého impulsu však může způsobit ohřev tkání, iontoforézu či elektrolýzu. Fyziologicky výhodnější defibrilační impulsu je 10 ms, [37], [14]. Klinické výsledky také prokazují, že vlastní defibrilační účinek má jen první vlna, ostatní jsou neúčinné a zbytečně zatěžují srdeční tkáň.

Proto, aby nebylo nutné defibrilaci opakovat, je třeba volit odpovídající energii impulsu. Při přímé defibrilaci srdce po kardiochirurgických výkonech se volí defibrilační impulsy s maximální energií 50 J, vrcholovou hodnotou proudu max. 12 A a šíři 6 ÷ 8 ms. Při nepřímé defibrilaci se aplikují impulsy s energií max. 360 J, proudu max. 40 A a šíři impulsu 5 ÷ 6 ms, [2], [37].

Synchronizace defibrilačního impulsu

Pro léčení rychlých arytmí v domácím prostředí (home care) byly vyvinuty automatické nebo semiautomatické defibrilátory. Po aplikaci „adhesivních“ elektrod, kterými je současně monitoruje EKG signál, jsou automaticky vyhodnoceny okamžik aplikace defibrilačních impulsů, [2].

Konstrukční řešení klinických defibrilátorů

Většina v současné době užívaných klinických defibrilátorů využívá akumulaci energie na kondenzátoru a tlumený sinusový impuls generovaný RLC obvodem. Vyrábí se také defibrilátery s trapezoidními tvary impulsů. Požadovaná šíře impulsů je v rozsahu 3 ÷ 10 ms, velikost impulsu 3 ÷ 6 (9) kV nebo 50 ÷ 100 A. Aplikovaná energie do 400 J u dospělých a 3 ÷ 5 J/kg u dětí, kde se v případě neúspěchu energie zdvojnásobí.
Principiální blokové schéma klinického defibrilátoru je na Obrázek 3.6, [2].

Obrázek 3.6: Principiální blokové schéma klinického defibrilátoru

Energie z kondenzátoru

\[W_s = \frac{1}{2} CU^2 \] \hspace{1cm} (3.1)

je předávána do obvodu pacienta reprezentovaného odporom \(R_p \).

\[W_d = W_s \frac{R_p}{R_p + R_i} \] \hspace{1cm} (3.2)

Odpor \(R_i \) je tvořen „vnitřním“ odporom RLC obvodu defibrilátoru. Odpor v obvodu pacienta \(R_p \) bývá cca 50 (25 ÷ 150) \(\Omega \).

Typická hodnota kapacity kondenzátoru je 40 \(\mu F \) (10 ÷ 50 \(\mu F \)). Pro energii 400 J je potom třeba zdroj napětí 4,47 kV. Při průměrné hodnotě odporu v obvodu pacienta 50 \(\Omega \) může max. hodnota proudu protékajícího pacientem dosáhnout až 89,4 A. Čas potřebný k nabiti kondenzátoru na cca 99 % energii bývá zpravidla 10 s.

Při defibrilaci se uplatňuje první půlčáru průběhu naznačeného na Obrázek 3.7.

Podle užitého zdroje energie se defibrilátoré dělí na síťové a bateriové. U síťových konstrukčních řešení je funkční kondenzátor nabijen z vn usměrňovače s vn transformátorem. Přenosné bateriové defibriláty využívají zpravidla akumulátory a měniče napětí.
Defibrilační elektrody

Podle způsobu aplikace mohou mít externí defibrilátory dva typy elektrod. Elektrody pro transtorakální (přes hrudník) defibrilaci nebo elektrody pro přímou defibrilaci na srdci. Elektrody se liší svou velikostí i provedením. V obou provedeních se však vyžaduje co nejlepší spojení s povrchem tkáně, aby nedocházelo k popálení. Bezpodmínečná je i bezpečnost obsluhy.

Pro transtorakální defibrilaci jsou elektrody klinických defibrilátorů velkoplošné s dobrou izolací držadel. Spouštění defibrilačního impulsu se provádí tlačítky na obou elektrodách. Přívodní vodiče jsou v několikažilových kabelcích připojených k obvodům defibrilátoru buď pevně nebo několikapólovými konektory.

Kontaktní plocha elektrod bývá 70 ÷ 100 cm², materiálem je nerez ocel nebo niklovaná či zlacená mosaz, [37]. Adhezivní elektrody pro automatické externí defibrilátory jsou z vodivých materiálů. Elektrody se aplikují buď obě na hrudí nebo jedna na hrudí a druhá na záda, [2].

Elektrody pro přímou defibrilaci mívají miskový či lžícový tvar s delšími izolovanými držadly a spouštěcími tlačítky. Účinná plocha bývá 30 cm², materiál elektrod je obdobný.

Kontrola účinnosti zákroku

Účinek defibrilačního impulsu se hodnotí navozením normálního srdečního rytmu při sledování EKG signálu. Ten se snímá z defibrilačních elektrod (vstup EKG zesilovače je chráněn) a zobrazuje se na kardioskopu. Obvody pro vyhodnocování EKG signálu se využívají i u synchronizovaných defibrilátorů s odpovídajícím zpožděním odvozeným od R vlny.
3.2.2 Implantabilní defibrilátory

Implantabilní defibrilátory označované také jako *implantabilní kardioverter defibrilátory* (ICD) jsou implantovaným terapeutickým zařízením, které detekuje komorové tachykardie či fibrilace a automaticky vybaví defibrilační impuls. Tento impuls (řádově 750 V) obnoví normální sinusový rytmus.

Indikací k implantaci jsou hemodynamicky závažné komorové tachykardie, flutter nebo fibrilace. V současné době aplikované ICD mají hmotnost cca 130 g a implantuji se bez torakotomie. Jeden katetr s defibrilační a stimulační elektrodou je zaveden žilní cestou do hrotu pravé komory, druhý defibrilační katetr je zaveden do horní duté žíly. Vlastní defibrilátor se implantuje do levé podklíčkové krajiny.

Konstrukční řešení

Obvodově jsou implantabilní defibrilátory sestaveny ze zesilovače EKG signálu, bloku zpracování signálu, z generátoru defibrilačních impulsů a vn kondenzátorů, násobíce (měniče ss) napětí, z paměti RAM k uložení pacientských i obvodových dat a telemetrického systému pro komunikaci s implantátem. Celý implantát (kromě kondenzátorů) je řešen na monolitických a hybridních obvodech. Maximální aplikovaná energie je 34 J.

Napájecí lithiová baterie má asi 6,5 V, defibrilační impuls musí mít 600 ÷ 750 V. Funkční kondenzátor má kapacitu 85 ÷ 120 µF a jako elektrolytické zabírají 20 až 30 % objemu defibrilátoru. Očekává se využívání keramických kondenzátorů nebo forem tenkých vrstev, kdy by se „objemová hustota energie“ měla zvýšit ze současných 0,03 J/cm³ na 0,6 J/cm³, [2]. Předpokládaná životnost 3 ÷ 5 let.

Systém elektrod

V posledních letech se defibrilační elektrody s vodiči zavádí transvenózní technikou. Vlastní elektrody jsou realizovány z Pt-Ir se silikonovou nebo polyuretanovou izolací. Více jak dvěma třetinami pacientů je akceptován střední defibrilační práh 10,9 ÷ 18,1 J, stimulační práh 0,96 ± 0,39 V. Amplituda EKG signálu bývá 16,4 ± 6,4 mV.

3.2.3 Kardioverze

Kardioverze je terapeutickým výkonem, kdy se elektrickým impulsem upraví srdeční rytmus. Aplikuje se při fibrilacích či flutter sini nebo při těžkých poruchách rytmu komor (činnost zrychlena, ale zachována). Výkon se provádí výhradně při uzavřeném hrudníku a není urgenční. Pacient bývá v celkové anestezii. Ke kardioverzi se užívají transtorakální defibrilační elektrody. Defibrilační impuls by měl dosáhnout vrcholové hodnoty proudu 60 A a energii 400 J. Aplikovat se nesmí ve vulnerabilní fázi srdečního cyklu. Součástí procedury musí být kontrola EKG signálu kardioskopem, [17], [37].
3.3 NEUROMUSKULÁRNÍ STIMULÁTORY

Elektrická stimulace nervů i kosterního svalstva stejně jako jiných orgánových struktur je závislá na změnách impedance mezi elektrodami způsobovaných procesy ve tkáních. Poměry se zásadně liší u transkutánních a implantabilních aplikací.

Impedance kůže a podkoží má jak známou kapacitní charakter. Při nízkých frekvencích je stimulační energie pohlcována převážně kůží. V té je rozmístěno množství nejrůznějších receptorů jejichž podrážděním vznikají nepříjemné pocity. Při vyšších frekvencích přidává více energie na tkáň některých orgánů.

Impedance kůže a podkožních tkání mezi elektrodami je samozřejmě závislá také na ploše elektrod. Doporučuje se proto užívat pokud možno elektrody o větších plochách nebo tekuté elektrody (elektrody v elektrolytu). Vyloučí se tak i závislost impedance kůže na změně přítlaku elektrody ke kůži.

Pro zmenšení odporu kůže je vhodné před stimulací kůži odmasti nejlépe éterem s následnou aplikací vodivé pasty nebo roztoku. Alkohol není vhodný. Vhodným roztokem je 5 ÷ 10 % roztok chloridu sodného. Na odpor kůže a podkožních tkání má vliv i teplota okolního prostředí. Při prudkém snížení teploty kůže o 20 °C se může zvětšit odpor až o 50 % (nelineárně).

Za nejvhodnější materiály stimulačních elektrod při transkutánních aplikacích jsou považovány vodivé polymery s náplní koloidní platiny, zlata, niklu, titanu. Vzdálenost mezi elektrodami by měla být 2 ÷ 3 cm.

Šíře pásmo elektrické aktivity svalů při spontánním stahu u zdravých jedinců je v rozsahu 20 až 500 Hz. Toto pásmo obsahuje 95 % energie myosignálu (EMG). Pro biologickou regulaci kosterních svalů stačí využívat pásmo 25 ÷ 60 Hz. Je rovněž známo, že amplituda EMG signálu je nižší u trénovaných než netrénovaných osob, [37].

Prahové podráždění

Práh elektrického podráždění je nižší v oblasti funkčně lépe vyvinuté struktury svalu. Bylo rovněž zjištěno, že existuje minimum energie potřebné k podráždění – jinak také optimální délka trvání stimulačního impulsu. Fáze stahu svalu trvá v průměru 0,1s, fáze uvolnění 3 ÷ 5 krát déle. Pokud se sval při opakování podráždění nestačí uvolnit dochází k jeho nepřetržitému stažení – tetanu. Sval se přitom může stáhnout 3 ÷ 4 krát více než při jednotlivém stahu. Opakovací frekvence stimulačních impulsů vyvolávajících tetanický stav je však pro různé svaly různá, [37].
Obrázek 3.8: Oblast selektivního dráždění svalu

Oblast selektivního podráždění trojúhelníkovými (pilovými) impulsy u normálního a plně denervovaného svalu je vyznačena na Obrázek 3.8. Na proudy na které denervovaný sval reaguje, zdravý sval nereaguje.

3.3.1 Rozdělení neuromuskulárních stimulátorů

Rozdělení stimulátorů nervů a svalů je naznačeno na Obrázek 3.9. Zásadně však tyto stimulátory mohou být realizovány jako jedno nebo vícekanálové, externí (transkutánní) nebo implantabilní.

Funkční stav neuromuskulárního systému charakterizuje síla, rychlost stahu a pracovní schopnost svalů. Síla je závislá na tloušťce svalových vláken a ovládání svalů, které se účastní pohybů. Významné je i vzájemné působení svalů synergistů a antagonistů. Přírůstek síly svalu je největší při izometrickém tréninku – sval se napíná, ale nepracuje.

Parametry neuromuskulárních stimulátorů

Při elektrostimulaci nervů a svalů se využívají nejrůznější tvary stimulačních impulsů na nízkých (do 1 kHz) a středních frekvencích (1 ÷ 100 kHz). Parametry jednotlivých typů stimulátorů se podle druhu aplikací volí zpravidla na základě všeobecných poznatků. Často však jen podle subjektivních pocitů pacientů. Hodnotí se tvar, velikost, šířka (délka) impulsu, opakovací frekvence. Doposud však není známo, které parametry a jak účinně ovlivňují které tkáně.
Obrázek 3.9: Rozdělení neuromuskulárních stimulátorů

Za optimální lze považovat stimulační impuls, který má minimální výkon a nejméně ovlivňuje kůži s jejími receptory. Stimulační impulsy by měly mít střídavou polaritu takovou, jak je naznačeno na Obrázek 3.10. Dráždění impulsy stejné polarity způsobuje podobné „chemické“ poškození tkání jako při dlouhodobém působení stejnosměrného proudu. Párové dráždění nervových vláken využívá sčítání dráždivosti vyvolané dvěma podprahovými impulsy. Sčítání podnětů se uplatní v době do $0,3 \div 0,5$ ms po zavedení prvního podráždění. U kosterního svalstva byla zjištěna optimální délka stimulačních impulsů $0,064 \div 1,23$ ms při minimální energii dráždění, [37].

Obrázek 3.10: Polarita stimulačních impulsů
Práh bolestivých pocitů vyvolaných stimulačními impulsy se mění s tvarem těchto impulsů: obdélníkové, sinusové, trojúhelníkové, lichoběžníkové, exponenciální. Bylo zjištěno, že nejméně bolestivé pocity jsou registrovány u impulsů s opakovací frekvencí 1 ÷ 150 Hz, délka 0,7 ÷ 0,8 ms, dobou čela 25 ÷ 100 µs, dobou temene 600 ÷ 700 µs. Stimulační impulsy delší než 1 ms s opakovací frekvencí 1 ÷ 20 Hz vyvolávají nepříjemné pocity, [37].

Minimální pocity bolestí byly shledány při aplikaci radiofrekvenčních stimulačních impulsů o nosné frekvenci 10 kHz, délka čela impulsů 25 µs a exponenciálním temenem o délce 975 µs. Aplikované výkony stimulačních impulsů jsou zpravidla v rozmezí 1 ÷ 8 mW, optimální opakovací frekvence pro podráždění sympatických nervů je 1 ÷ 10 Hz, pro podráždění parasymphatických nervů pak 25 ÷ 100 Hz. Účinná je sdružená amplitudová a frekvenční modulace stimulačních impulsů, [37]. Terapie neuromuskulární stimulací se v klinické praxi pohybuje v délce od 1 do 30 minut při jedné aplikaci a v počtu celkem 5 ÷ 15 návštěv.

Obrázek 3.11: Blokové schéma neuromuskulárního stimulátoru

Blokové schéma neuromuskulárního stimulátoru

3.3.2 Biologicky řízené stimulátory

Koncepcii i využití biologicky řízených neuromuskulárních stimulátorů souvisí v převážně většině případů s aplikacemi na končetinové protézy nebo s nejrůznějšími formami relaxačního tréninku. Zásadně můžeme biologicky řízenou stimulaci dělit na:
- bez biologické zpětné vazby,
- s biologickou zpětnou vazbou, *biofeedback*.

První skupina stimulátorů se využívá v rehabilitačních technikách (při léčení paréz – neúplné obrny), při nácviku ovládání končetinové protézy ap. Realizace je možná formou
Externí, transkutánně aplikovaného stimulátoru nebo telemetrický. Nosná frekvence telemetru potom bývá 60 ÷ 80 MHz.

Druhá skupina stimulátorů je využívána k vědomé kontrole nejvýznamnějších životních funkcí: svalová aktivita, navození odpovídající EEG aktivity, změna teploty těla, odporu kůže, krevního tlaku, srdečního rytmu, respirace. Jednou z forem biofeedbacku je i audiovizuální stimulace (AVS) rozsáhle uplatňovaná nejen v relaxačních technikách.

3.3.3 Implantabilní neuromuskulární stimulátory

Implantabilní stimulátory nervů a svalů mají oproti externím zásadní výhodu. Elektrody jsou zaváděny až k nervům a přímo do svalů a tím získávají větší účinnost léčebného výkonu. Principiálně mohou být řešeny buď jen s implantovaným elektrodovým systémem nebo jako kompletně implantovatelné.

Percutánní (přes kůži zavedený) elektrodový systém má implantovány pouze vodiče se stimulačními elektronicemi. Vlastní elektronika stimulátoru je řešena sice jako bateriově napájená, ale externí. Stimulační elektrody se zavádějí pomocí jehel - trokaru (nástroje k nabodnutí). Užité vodiče musí mít co nejméně průměr, ale vysokou pevnost. Tyto stimulační systémy jsou využívány hlavně k řízení protéz horních a dolních končetin, [2].

Součástí kompletně implantabilních systémů neuromuskulárních stimulátorů je kromě stimulačních elektrod a vlastní elektroniky stimulátoru také přijímač telemetrického systému. Vysílač telemetru jako externí část systému je se svou vysílací cívou (anténou) umístěn nad implantátem. Telemetrický systém slouží k řízení funkce stimulátoru, tj. předání požadované aktivační sekvence implantátu buď operátorom nebo samotným pacientem.

Elektronika implantátu využívá speciální integrované obvody včetně obvodů hybridních a bateriové napájení. S ohledem na agresivnost prostředí je vše hermeticky zapouzděno.

Stimulátory pracují s 8 ÷ 20 kanály s proudovými impulsy 1 ÷ 20 mA, šíří impulsů 200 µs podle typu stimulačních elektrod (nervové a svalové). Potřebný příkon implantátu tak je několik set mW. Stimulační elektrody mohou být v monopólárním nebo bipolárním provedení. Užívané stimulační impulsy mají být zásadně bifazické buzené ze zdroje konstantního proudu.

K zapouzdření implantovatelné elektroniky se užívá jak polymerů (epoxy a silikonová prýž), tak kovů (titan) a keramiky. V současné době se epoxydová pryskyřice užívá jen jako obal přijímací cívky telemetru. S ohledem na prostup vlhkosti není pro elektronické obvody vhodná. Kovové zapouzdření využívá titan s keramickými průchodkami do hermeticky uzavřeného pouzdra. Přijímací cívka telemetru je pro získání vF signálu mimo obal. Nejvhodnější je keramické zapouzdření a hermetické utěsnění elektroniky společně s přijímací cívkou. Díky vF transparentnosti keramiky se tak zmenší rozměry implantované části, [2].
3.4 UROSTIMULÁTORY

Jednou z významných oblastí aplikace elektrostimulace je také léčení dysfunkcí dolních močových cest a pánevního dna. Z urodynamického hlediska dělíme tyto stavy na poruchy:
- jímací schopnosti,
- vypuzovací schopnosti.

Bez ohledu na možnosti chirurgických rekonstrukcí jak hrdla močového měchýře, tak implantovaných náhrad sfincterů (svěračů), je nejvhodnější náhradou poškozených centrálních neurogenních struktur řídících funkcí pánevních orgánů není neurostimulace.

Stimulace močového měchýře

Z principiálního hlediska můžeme elektrickou stimulaci močového měchýře provádět stimulací:
- nervů - pelvických (pánevních, stydkých), - sakrálních (v kříži),
- svalů močového měchýře,
- míšních center močení.

Vlastní stimulaci můžeme provádět:
- nepřímou - indukční vazbou pomocí implantované cívky,
- přímou - implantovanými stimulačními elektrodami s percutánně zavedenými vodiči externího stimulátoru,
- vf přenosem - stimulačních impulsů do plně implantovaných obvodů přijímače stimulátoru s elektrodami.

Dlouholeté studie a experimenty prokázaly, že nepřímou stimulaci pelvických nervů elektrickými impulsy o velikosti 5 ÷ 10 mA, šíři 7 ms a opakovací frekvenci 15 Hz po dobu 10 s se zvýší tlak v močovém měchýři na více jako 6 kPa. Tato hodnota stačí k překonání tonického odporu sfincteru (svěrače) a vyprázdnění močového měchýře, [37].

Při vf přenosu stimulačních impulsů jsou za nejúčinnější považovány parametry: velikost impulsů 5 ÷ 15 V, šíře 1 ÷ 6 ms, opakovací frekvence 15 ÷ 50 Hz. Při přímé stimulaci svalů močového měchýře se jevily jako nejvýhodnější impulsy o velikosti 2 ÷ 10 V, šíři 5 ÷ 10 ms a opakovací frekvenci 10 ÷ 20 Hz, [37].

Velikost a tvar stimulačních elektrod jsou podřízeny požadavkům maximálního účinku při minimální traumatizaci močového měchýře. Proto jsou nejvíce užívány plošné elektrody. Při stejnéch parametrech stimulace je účinek větší použitím 4 ÷ 6 elektrod. Zadní plochu elektrod je třeba dobře izolovat. Dolní elektrody se umisťují 1,5 ÷ 2 cm od krčku, čímž se přede.isLoadingValue();

Močový měchýř lze dráždit i nepřímou přes stěnu konečníku - transrektální stimulaci, což vede ke zlepšení urodynamických parametrů. Objem močového měchýře se zmenší, síla kontrakce detrusoru se zvětší a zvětší se i průtok moči. V případě stále velkého reziduálního objemu moči (víc než 100ml) je indikována implantace vf řízeného stimulátoru pro přímou stimulaci močového měchýře.
Stimulace svěračů

Při poškození centrálních a periferních článků řídícího systému kontrakce svěračů močového měchýře a konečníku dochází k inkontinenci (neschopnosti udržení) moči a stolice. Přičinou poruch mohou být komplikace v pooperační době při adenoektomii (chirurgické vynětí nezhoubného nádoru žlázy) či po gynekologických onemocněních.

Stimulace svěračů spočívá v zavedení stimulačního impulsu elektrodami do oblasti rozkroku a tím jejich uvedení do stavu tense. Stimulace může být prováděna trvale implantovanými systémy nebo dočasně klinickými přístroji. Dodávají se i přenosné stimulátory pro trvalou stimulaci s vnějšími nebo rektálními elektrodami. Většinu realizovaných stimulátorů lze využívat podle rozmístění elektrod jak pro stimulaci svěrače močového měchýře, tak svěrače análního.

Parametry stimulátorů: velikost impulsů 1 ÷ 20 V, šíře 1 ÷ 5 ms, opakovací frekvence 3,3 ÷ 150 Hz, případná nosná frekvence vf impulsů 1 ÷ 8 kHz. Doba trvání jedné procedury bývá 3 ÷ 20 minut.

Umístění elektrod je možné:
- aktivní endouretrální elektroda zavedená uretrou k vnitřnímu svěrači, indiferentní elektroda 100 cm² v oblasti křížové části páteře,
- aktivní externí elektroda nad stydkou sponou, indiferentní elektroda nad křížovou částí páteře,
- aktivní rektální elektroda zavedená do hloubky 2 ÷ 3 cm do konečníku, indiferentní elektroda 100 cm² nad stydkou sponou.

Účinnost léčby je od 60 do 95 %, což je podmíněno kvalitním urodynamickým vyšetřením a diagnostikou funkčního stavu detrusoru krčku močového měchýře i svěrače uretry, [37].

3.5 GASTROSTIMULÁTOŘY

Stahy ve hladkém svalstvu se šíří velice pomalu (3 m/s), zato projevem je velká síla kontrakce. Účinek podráždění hladkého svalstva je závislý na vztahu mezi frekvencí stimulačních impulsů a frekvencí vlastní spontánní aktivity. Při nízkém tonu svalstva stimulace zesiluje tonus, při vysokém tonu dochází k uvolnění jako odezvy na podráždění. Stimulace má proto začínat od nízkých opakovacích frekvencí stimulačních impulsů.

U zdravých jedinců je dominantní četnost (frekvence) aktivity žaludku okolo 3 cyklů za minutu. Stimulace gastrointestinálního (zažívacího) traktu je možná nepřímým a přímým přístupem. U nepřímé metody jsou stimulační elektrody o průměru 15 ÷ 20 mm přiloženy na povrch břicha ve vzdálenosti 50 ÷ 60 mm od sebe. Umístění se vlevo nebo vpravo od střední linie břicha, po jedné její straně na úrovni pupku. Před vlastní stimulací se 5 - 7 min. sníma spontánní elektrická aktivita tenkého střeva - elektroenterogram. Parametry stimulace: velkost stimulačních impulsů 1 ÷ 25 V, šíře 0,5 ÷ 10 ms, opakovací frekvence 15 ÷ 50 Hz.

Při elektrickém dráždění externími elektrodami dochází ke stahu střeva pod elektrodami do vzdálenosti 100 ÷ 150 mm. Peristaltická vlna má reflexní povahu a není reaktivní. Stimulační elektrické pole se vytváří mezi zápornou aktivní elektrodou
zavedenou do konečníku a kladnou pasivní elektrodou na stěně břišní. Aktivní elektroda bývá z nerezavějící oceli délky 300 mm a průměru 5 mm, zahnutá. Má pryscový obal a aktivní úsek 10 ÷ 15 mm. Pasivní elektroda bývá tvořena olověnou destičkou 60 x 120 mm, tloušťky 10 ÷ 15 mm, uloženou do flanelu napuštěného fyziologickým roztokem. Aktivní elektroda se zasouvá do rekta do hloubky 15 ÷ 20 cm, [37]. Jedná se o transrektální způsob stimulace.

Přímou stimulaci žaludku a střev lze principiálně provádět klinickými nebo implantabilními stimulátory. Pro obvodové řešení platí totéž co pro neuromuskulární stimulátory. Rozdíl je jen v aplikaci a zavádění elektrod. Elektrody při transgastrální stimulaci mohou být v provedení unipolárním nebo bipolárním. Zaváděné potom jsou ústy do žaludku. Aktivní unipolární elektroda má tvar "olivy" s vodiči v polyvinylchloridové hadici připojeným konektorem k externímu stimulátoru. Indiferentní kladná elektroda tvořená olověnou destičkou 100 x 150 mm se umisťuje na stěnu břišní v krajině epigastria (nadbřišku).

Transduodenální stimulace (přes dvanáctník) s bipolární elektrodou využívá tzv. duodenální sondu. Stimulační elektrody 5 x 5 mm ze stříbra jsou umístěny na sondě ve vzdálenosti 30 mm od sebe. Pro tuto stimulaci postačí menší velikost stimulačních impulsů. Parametry externích stimulátorů: velikost stimulačních impulsů 5 ÷ 20 mA nebo 2 ÷ 20 V, šíře impulsů většinou 5 ms, opakovací frekvence 20 ÷ 60 Hz. Doba stimulace 3 minuty s přestávkou 3 minuty, po dobu celkem 30 minut, [37]. Klinická účinnost se prokazuje záznamem elektrogastrogramu (EGG).

4 Ultrazvuková terapie, aerosologie a chirurgie

Z hlediska šíření ultrazvukové energie je lidský organismus nehomogenním a vrstevnatým prostředím. Jednotlivé tkáně a orgány mají své akustické impedance. Na rozhraních těchto tkání tím dochází k nerovnoměrnému rozdělování vyzařovaného výkonu. Díky velkému tlakovému spadu ultrazvukového (uzv) vlny vznikají mezi částicemi prostředí relativně velké vzájemné pohyby. Tím dochází ve tkáních k mikromasážím spojeným s lepším prokrvením podporujícím rychlejší hojení ran po chirurgických výkonech i v traumatologických situacích.

Průběh intenzity uzv v ozvučovaném prostředí však není ovlivňován jen interferenčními jevy. V jednotlivých tkáních a orgánech dochází také k útlumu a tím i absorpci části přiváděné uzv energie, která se tak mění v teplo. Útlum uzv má kromě složky absorpční také rozptylovou. Velikost signálu se vzdálenosti v prostředí exponenciálně klesá. Pro intenzitu uzv můžeme psát:

\[I_x = I_0 \times e^{-2\alpha x} \] \hspace{1cm} (4.1)

kde:
\[I_0 \] je vztažná hodnota intenzity uzv,
\[\alpha \] činitel útlumu na jednotku vzdálenosti [dB/m],
\[x \] vzdálenost.
Nejvyšší hodnoty činitelé útlumu jsou u plynů (vzduch 0,14 dB/mm.MHz), nejnižší jsou u kovů hliník 8,7 \times 10^{-3} \text{dB/mm.MHz}). Biologické tkáně dosahují hodnot 0,01 \div 3,3 \text{dB/cm.MHz}, lebeční kost 20 dB/cm.MHz.

V uzv terapii využíváme převážně blízké pole vyzařované měničem. Tvar a rozdělení na blízké a vzdálené pole je naznačeno na Obrázek 4.1. Blízké pole měniče o průměru D aproximujeme válcem, vzdálené pole vymezené posledním maximem tlaku či intenzity v ose měniče aproximujeme kuželem.

Obrázek 4.1: Rozdělení pole ultrazvukového měniče

Velikost blízkého pole určíme ze vztahu

\[
L = \frac{D^2 - \lambda^2}{4\lambda}
\]

a úhel rozšíhavosti svazku

\[
\theta = \arcsin \frac{\lambda}{D}
\]

Na rozdíl od uzv diagnostiky jedná se v uzv terapii o aplikace výkonové. Piezoelektrický měnič je uložen v terapeutické hlavici zpravidla vodotěsně. Buzení měničů je nejčastěji kontinuálně vyšílanou nosnou vlnou (CW), někdy s amplitudovou modulací nebo klíčováním. Z konstrukčního hlediska je zcela zásadní tloušťka krycí vrstvy uzv měniče ve směru vyzařování. Pro maximální přenos energie musí být vrstva rezonančně naložena a její velikost má vyhovovat podmínce minima odrazů a maximálního průniku:

\[
d = n \cdot \frac{\lambda}{2}, \quad n = 1,2,3\ldots
\]
4.1 FYZIOLOGICKÉ ÚČINKY VÝKONOVÉHO ULTRAZVUKU

Při působení výkonového uzv na biologické systémy se jedná o aktivní interakci, při kterých pohlcená uzv energie vyvolá v biologických systémech změny. Cíleně využití těchto změn je v uzv terapii a chirurgii.

Biologické účinky zásadně dělíme na:
- primární - dané mechanickým působením uzv,
- sekundární - způsobované jinými druhy energie v něž se uzv energie transformovala (tepelná, chemická ap.).

Podle způsobu interakce hovoříme o působení:
- přímém - projevujícím se během aplikace,
- nepřímém - zprostředkovaném buď fyzikálně, chemicky nebo reflexně.

Z hlediska mechanismu působení můžeme biologické účinky rozdělit na:
- kavitáční,
- tepelné,
- ostatní - s převahou účinků mechanických a chemických.

Tepelné účinky

Zvýšení lokální teploty ve tkání chápeme jako důsledek absorpce uzv energie a někdy také jako následek impedančních vazeb. Ke vzniku teplotního rozdílu dochází na rozhraní různých akustických impedancí tkání tak, jak je naznačeno na Obrázek 4.2. Tohoto poznatku se využívá v uzv fyzikální terapii.

![Obrázek 4.2: Tepelný reliéf rozhraní tkání](image)

Absorpce uzv ve tkáních je závislá na frekvenci, kinetické viskozitě a termoregulačním mechanismu kůže, který konvekci zabezpečuje převod tepla do ostatních tkání těla. Podstatnou roli zde sehrává krevní oběh.
Mechanické a chemické účinky

Riziko ultrazvukových aplikací

Velikost intenzity ultrazvuku je základním kritériem při posuzování rizika uzv aplikací v lékařství. Světová zdravotnická organizace (WHO) posoudila v roce 1976 publikované výsledky z oblasti biologických účinků při aplikacích uzv a vypracovala následující doporučení. Stále platí, že při diagnostických postupech, ve frekvenčním rozsahu 1 ÷ 20 MHz, by aplikovaná intenzita uzv neměla překročit 1 kW/m² (100 mW/cm²) při expozičních časech 1 ÷ 500 s. Dávka uzv by tak měla být nižší než 10^3 J/m². Aplikovaná intenzita v uzv terapii nemá překročit 30 kW/m² (3 W/cm²) při maximální expoziční době 15 minut. Doposud nebyly publikovány nálezy, podle kterých by bylo možné označit tyto dávky v uzv aplikacích za zdraví škodlivé či nebezpečné.

4.2 FYZIKÁLNÍ TERAPIE

Zásady pro volbu pracovní frekvence, průměry uzv měničů, užitou dávku i konstrukční řešení přístrojů s ohledem na bezpečnost pacientů jsou platné pro všechny aplikace ve fyzioterapii.

Technické aspekty

Z technického hlediska nás u každého terapeutického zařízení zajímá použitá pracovní frekvence, provedení uzv hlavice, konstrukční řešení vlastního přístroje a druh provozu, velikosti dávek a jejich kontroly.
Pracovní frekvence uzv se ve všech aplikacích volí s ohledem na požadovanou hloubku vniku. Ve fyzikální terapii se mezinárodně zavedenou frekvencí 800 kHz, výjimečně 1,6 MHz s ohledem na odpovídající poloviční hloubku vniku 5 ÷ 7 cm ve tkání. Poloviční hloubka vniku je hloubka ve tkání, ve které intenzita uzv vůči intenzitě na povrchu těla má poloviční hodnotu. Při vyšších frekvencích je však absorpcie uzv tak velká, že dochází jen k působení na tkáně uložené co nejbližě povrchu těla.

Obrázek 4.3: Blokové schéma terapeutického zařízení

Dávka je definována jako velikost intenzity uzv po dobu ozvučování. V terapeutických aplikacích se intenzita volí od 0,5 do 30 kW/m² (0,05 ÷ 3 W/cm²). Doba ozvučování bývá 3 ÷ 10 (15) minut podle indikace. Při aplikacích se nemá zvyšovat intenzita uzv na úkor doby ozvučování. Počet dávek v sérii má být 5 ÷ 15.

Léčebná hlediska

Způsob aplikace je možný přímým ozvučováním místa - lokálně nebo nepřímě - paravertebrálně ozvučováním nervově přidružených segmentů páteře. Oba způsoby lze realizovat buď přímým kontaktem hlavice s kůží pacienta přes vazební prostředí (olej, gel), nebo zprostředkovaně (subaquálně) ve vodní lázní 1 ÷ 3 cm od kůže. Poloha pacienta není rozhodující.
Přenos uzv energie do tkáně je možný statickým ozvučováním nebo masážovitými pohyby hlavici. Při statickém ozvučování je třeba dávkou při aplikaci snížit asi na 1/5 uvažované. Při subaquálním ozvučování masážovitými pohyby naopak zvýšit. Velikost intenzity a počet dávek jsou závislé na charakteru a stadiu onemocnění.

4.3 AEROSOLOGIE

Ultrazvuková aerosologie je součástí oboru inhaláční terapie. Ultrazvuková energie je v těchto aplikacích využívána k disperzi tekutin na aerosoly působící léčebně.

Aerosol je kvazistabilní jemná suspenze pevných či kapalných látek v plynu. Průměr částic se pohybuje od 1 nm do 10 µm. Plyněné suspenze s částicemi o průměru větším než 5 µm se relativně rychle snáší k zemi a označují se proto jako spray. Při rozměrech částic menších než 1 nm dosahují suspendované částice velikostí molekul a hovoříme tak o páře či plynu. Podstata vzniku aerosolu se vysvětluje vznikem kavitace nebo turbulentního proudění v kapalinách.

Hloubka vniku částic aerosolu do respiračního ústrojí závisí na jejich průměru. Zatím co spray s průměrem částic větších než 30 µm sedimentuje v průdušnicí a částice o průměru 10 µm v průduškách, zasahují aerosoly se svým průměrem částic 0,5 ÷ 3 µm až do plicních sklípek, ze kterých jsou částečně vydechovány. Ultrazvukovými aerosolátorý je možné získat velmi jemné a homogenní suspenze se spektrem částic o průměru 0,2 ÷ 5 µm.

![Obrázek 4.5: Průměr částic aerosolu v závislosti na frekvenci](image)

Obrázek 4.5: Průměr částic aerosolu v závislosti na frekvenci

Pro tvorbu aerosolu je rozhodující pracovní frekvence, tvar měniče, použitý budící výkon a druh rozprašované kapaliny. Experimentálně byla ověřena závislost nejčastěji se vyskytujících průměrů částic na užité budící frekvenci v rozsahu 1 ÷ 5 MHz, **Obrázek 4.5.** Zpravidla je využíván fokusovaný typ uzv měniče. Generovaný zamlžený objem bude tím větší, čím menší bude povrchové napětí použité kapaliny. V praxi se dosahuje hodnot 3 ÷ 10 cm³/min.
Konstrukční náčrt ultrazvukového aerosolátoru je na **Obrázek 4.6.** S ohledem na elektrickou pevnost piezoelektrického měniče (PZT keramiky) se obvykle volí pracovní frekvence na 3. harmonické užitého měniče (tloušťka materiálu). Měnič je fokusován a uložen v nádobě s vodou. Nad folií rozdělující zamlžený prostor od vody je udržována ve výšce 1 ÷ 2 mm nad ohniskem rozprašovaná kapalina. Horní část nádoby je skleněná o obsahu cca 1,5 l. Zamlžovaný výkon do 3 cm³/min.

Obrázek 4.6: Ultrazvukový aerosolátor

Pro uzv zamlžování jsou vhodné všechny tekutiny, roztoky a suspenze s nízkou viskozitou a malým povrchovým napětím: antibiotika, chemoterapeutika, spasmolytika, tuberkulostatika, sekretolytika ap. Je možné aplikovat i minerální vody. Výhodou uzv aerosolových inhalátorů je možnost přesného dávkování, vysoká hustota generovaného aerosolu a tím i krátká doba inhalace. Aerosol se neochlazuje expanzí. Tato zařízení se hodí jak k profylaktickým, tak terapeutickým účelům u novorozenců i dospělých.

4.4 ULTRAZVUKOVÁ CHIRURGIE

V chirurgických aplikacích se využívá zvláště kavitačních a tepelných jevů ultrazvuku. Užitá intenzita uzv je u všech aplikací vyšší než 10 W/cm²; ve fokusovaném svazku a ohnisku může dosahovat hodnot až 20 kW/cm². Doba aplikace dle typu chirurgického výkonu se pohybuje od 1 do 20 s. Pracovní frekvence jsou v rozsazích 20 ÷ 40 kHz a 1 ÷ 7 MHz.

Řízené selektivní rozrušování tkání bylo v počátcích rozvoje těchto aplikací užíváno i v neurochirurgii (lobotomie) a ve vestibulární chirurgii. Výkony v neurochirurgii byly nahrazeny aplikací Leksellova gama nože, ve vestibulární chirurgii novými operačními
postupy. Těžištěm zůstávají výkony na oku, odstraňování zubního kamene, osteosyntéza a drcení ledvinných konkrementů.

4.4.1 Ultrazvuková chirurgie oka

Řezná schopnost chirurgických nástrojů se zvýší pokud vybudíme jejich břity uzv kmitočty. Operační rána má rovné okraje, okolní tkáně jsou minimálně traumatizovány, srůstání je s minimálním zjizvením.

Operačními výkony jsou:
- fragmentace (roztříštění či rozmělnění) a aspirace (odsání) čočky před následnou implantací čočky umělé. Výkon je označován jako lensektomie,
- odstranění povrchových vrstev rohovky a výkony při extrakci katarakt (šedý zákal),
- řezy při plastických operacích víček a skléry (bělima - vnější obal oka).

Pracovní frekvence zařízení při těchto výkonech bývá 40 kHz, aplikovaná intenzita $3 \div 12 \text{ W/cm}^2$, doba výkonu $2 \div 20$ s. Speciálně konstruované nástroje jsou buzeny magnetostrikčními měniči, stejnosměrná předmagnetizace je zajištěna permanentními magnety. Vlastní nástroje - duté jehly nebo břity jsou zabudovány do čela uzv vlnovodu tak, aby byl umožněn průtok roztoku při aspiraci.

Bodování odchlípené sítnice (retiny - primární odchlípení neboli amoce) se v současné době provádí laserovým svazkem. Chirurgický výkon se však prováděl i výkonovým uzv svazkem aplikovaným kónickým vlnovodem. Pracovní frekvence byla $3 \div 7\text{ MHz}$, intenzita v impulsu do 250 W/cm^2.

4.4.2 Odstraňování zubního kamene

Zařízení pro odstraňování zubního kamene je v současné době součástí každé stomatologické soupravy. Patří k moderním metodám parodontologie. Umožňuje profesionální péči o periodont (závěsný aparát zubu) účinným a vcelku bezbolestným gingiválním i subgingiválním (dásňovým) odstraněním zubního kamene.

Princip spočívá v uvolnění zubního kamene uzv kmity pracovního nástroje se současným působením kavitace ve vodě stěkající po hrotu tohoto nástroje. Pracovní frekvence jsou v rozsazích $24 \div 42$ kHz, generovaná intenzita uzv je větší než 10 W/cm^2. Vzhledem k tomu, že je požadována co nejnižší hmotnost nástroje, užívají se uzv měniče typu *sandwich* s piezoelektrickými prvky. Ultrazvukový vlnovod (koncenrátor, nádostač) i vlastní pracovní nástroj je z titanu. Schématický náčrtek nástroje je na Obrázek 4.7. Proud vody je přiváděn ke hrotu pracovního nástroje otvorem ve vlnovodu.
Obrázek 4.7: Nástroj pro odstranění zubního kamene

Buzení uzv měničů vyžaduje napětí řádově $400 \div 500$ V, což klade odpovídající nároky na elektrické obvody a izolační vlastnosti napájecího zdroje. Vlastní činnosti - dotykom hrotu pracovního nástroje s povrchem zubu se uzv systém rozladi a proto je zavedeno automatické řízení frekvence budícího generátoru. Provoz zařízení (zapnuto/vypnuto) může být ovládán manuálně nebo automaticky - tehdy kmity nástroje ustanou po 1s při oddálení pracovního hrotu od povrchu zubu.

4.4.3 Ultrazvukové drcení konkrementů

Vznik kamenů v ledvinách a močových cestách je označován jako nefro a urolithiasa. Kameny - konkrementy mohou mít nejrůznější velikosti, tvary i chemické složení. Nejčastější jsou:

- oxalátové,
- fosfátové,
- karbonátové,
- cystinové,
- urátové.

Velikosti se pohybují v rozsahu průměrů $5 \div 25$ mm.

Terapie je možná v podstatě trojího druhu:

- farmakologická - disolucí (rozpuštěním),
- drcením,
- chirurgická - nefrolitotomie, cholecystotomie.

Jednotlivé formy terapie se podle velikosti a uložení konkrementů zpravidla kombinují.

Jedná se o perkutánní metodu - tedy průnik přes kůži. Konkrement se zaměří rentgenovým nebo ultrazvukovým zobrazovacím systémem a po postupném zavádění punkční jehly, kovového zavaděče, dilatační trubičky se zavede nefroskop se sonotromou.

Princip funkce je obdobný jako při odstraňování zubního kamene pouze s mnohem větší aplikovanou intenzitou. Pracovní frekvence těchto zařízení je v rozsahu 23 ± 28 kHz, budící výkon generátoru 50 ÷ 100 W. Vlastní sonotroda musí mít minimální hmotnost, zpravidla do 400 g. Průměr zaváděné části - vlnovodu bývá 1,9 ÷ 4 mm, jeho délka 400 mm. Amplituda kmitů hrotu sonotrody dosahuje velikosti 20 ÷ 70 µm. Pro buzení uzv kmitů jsou užívány piezoelektrické měniče v systémech sandwiche. Vlnovody - koncentrátoré se realizují z titanu, jeho slitin nebo antikorozních ocelí. Středem vlnovodu je přiváděna fyziologický roztok umožňující odsání rozdrcených částí konkrementu. Okraj vlnovodu - sonotrody může být hladký nebo se zářezy jako „korunka“.

Stejně jako u ultrazvukového skalpelu musí být výkon generátoru regulovatelný s automatickým doložováním frekvence (amplitudy) systému při zatížení. Drcení probíhá při přímém kontaktu sonotrody s konkrementem. Při zákroku bývá pacient zpravidla v celkové anestezii.

5 Vysokofrekvenční ohřev tkání, elektrotomie

Elektromagnetické pole je v celém svém rozsahu frekvencí, tj. do 10^{24} Hz při interakcích se živými objekty biologicky aktivní. Mechanismus účinků však není v celém tomto frekvenčním pásmu stejný. Rozdělíme jej na:
- neionizující
 - záření části UV, viditelné, IR, radiové,
- ionizující
 - záření části UV, RTG a γ.
Za hraniční je považována frekvence 10^{12} Hz. Rozhodující z hlediska účinků však není jen kmitočet, ale i energie aplikovaného vlhčení. Minimální energie potřebná k ionizaci v přírodě je 10 ÷ 25 eV (ne záření laseru). Aplikace popisované dále v této kapitole jsou výhradně z oblasti neionizujícího elektromagnetického vlhčení.

Elektromagnetické pole obecně třídíme podle nejrůznějších kritérií respektujsících způsob generování, rozložení v prostoru, časový průběh, polarizaci, vyzářený výkon, vlnovou délku. V terapeutických aplikacích jsou využívána elektromagnetická (elmg.) pole krátkých a velmi krátkých vln s výkony vyhovujícími hygienickým normám.

Vlastnosti tkání v elektromagnetickém poli

Dráždivost tkání organismu při aplikaci elektromagnetických polí buzených harmonickými signály je omezena frekvencí 100 kHz. Koresponduje to s poznatky dokumentovanými Hoorweg-Weisssovou křivkou (Obrázek 3.1.). Při vyšších frekvencích nereaguje již žádná tkání na podráždění elmg. polem ani při hustotách v A/cm². Předávaná energie se mění v teplo (Jouleův zákon).
Z hlediska působení elmg. polí na biologické objekty představují tkáně vrstvenatá nehomogenní dielektrika charakterizovaná komplexní vodivostí

\[\sigma_k = \sigma + j\omega \varepsilon \]
(5.1)

a komplexní permitivitou

\[\varepsilon_k = \varepsilon - j \frac{\sigma}{\omega} \]
(5.2)

Komplexní permeabilita tkání je jak známo: \(\mu_k = \mu_0 \). Průběh závislosti složek charakteristické impedance šíření v biologických tkáních na frekvenci je naznačen na Obrázek 5.1.

\[\text{Obrázek 5.1: Průběh charakteristické impedance v závislosti na frekvenci} \]

5.1 FYZIOLOGICKÉ ÚČINKY ELEKTROMAGNETICKÝCH POLÍ

Fyziologické účinky elmg. polí nejsou dosud plně objasněny. Nejistota vzniká zvláště při snaze aplikovat experimentálně získaná data pro potřeby klinické praxe. Bylo prokázáno, že závisí na řadě objektivních, ale i subjektivních faktorů. Hlavními jsou:

- Fyzikální parametry
 - pracovní frekvence,
 - velikost intenzit,
 - doba aplikace,
 - charakter pole (spektrum budícího signálu).
- Fyzikálně chemické vlastnosti organismů:
 - velikost, hmotnost,
 - charakter povrchu (oděv),
 - tloušťka označovaných vrstev.
- Okamžitý stav organismu, zdraví fyzické i psychické.
Vlastní interakci elmg. polí s biologickými systémy však zásadně hodnotíme jako:

* pasivní - pokud λ je mnohem větší než objekt,
* aktivní - pokud λ je srovnatelná s velikostí objektu.

Hraniční práh citlivosti lidského organismu na energii elmg. pole byl stanoven výkonovou hustotou 10^{-12} W/m² (10^{-10} µW/cm²). Tato hodnota byla experimentálně ověřena studiem specifických receptorů - zrak a sluch. Lidský organismus však nemá receptory pro vnímání elektrického, magnetického, elektromagnetického ani ionizujícího záření. Přesto však jsou tato pole tkáněm organismu a regulačními mechanismy objektivně vnímána. Z hlediska přenosu informací spojených se stimulací či inhibicí určitých nervových center je považována za prahovou výkonovou hustotu už 1 mW/m² ($0,1$ µW/cm²).

Z provedených studií vyplývá, že živé tkáně reagují nejvýrazněji v mikrovlnné oblasti pole. Většina prací prokazuje, že spojitá ani impulsová pole do hustot 10 W/m² (1 mW/cm²) organismy nepoškozují. Dochází dokonce k částečné adaptaci organismu bez výrazných tepelných projevů.

Mechanismy účinků jako reakce a odezva tkání organismu na působení elmg. polí vychází z fyzikálních jevů *absorpace* a *induce*. Výsledným projevem potom jsou *tepelné* a *netepelné* projevy. Mezi oběma skupinami mechanismů a projevů není ostrá hranice. Za určitých podmínek a při jistých vlastnostech organismu může netepelný projev výrazně převládat nad tepelným a být tak biologicky určujícím faktorem. Hodnota střední výkonové hustoty pro hraniční oblast mezi tepelnými a netepelnými účinky je odhadována na $0,1 \div 1$ W/m² ($10 \div 100$ µW/cm²). Pod touto hodnotou převažují netepelné účinky, nad ní účinky tepelné. Rizikovými jsou výkonové hustoty větší než 2 W/m² (200 µW/cm²). Za nebezpečné jsou považovány hustoty výkonu nad 100 W/m² (10 mW/cm²).

Tepelné účinky

Tepelné účinky elmg. polí, které se projevují objektivně indikovatelným zvýšením teploty označovaných tkání, jsou závislé na velikosti pohlcené energie a na hloubce, ve které se záření absorbuje. Čím vyšší je užitá pracovní frekvence, tím menší je hloubka vnímení do tkání organismu. Výsledný tepelný efekt je závislý na rozměrech a tvaru biologických struktur, na možnostech jejich ochlazování protékající krvi či odvodu tepla z povrchu těla (evaporace). Zásadní význam zde proto má termoregulační mechanismus organismu. Průběh změn teploty typických tkání při ozáření elmg. polem dokumentující adaptiční schopnost organismu je uveden na Obrázek 5.2.

Při celotělových modelových studiích respektujičích konstituční parametry jedinců byla zjištěna závislost absorbovaného výkonu na frekvenci. Tato závislost je uvedena na Obrázek 5.3.

Z fyzikologického hlediska rozlišujeme konstituční typy:
- *tepelně sytý* typ, což je organismus, který na teplo rychle reaguje, ale špatně ho snáší,
- *tepelně hladový* typ, který má těžší reakce, ale větší tepelnou toleranci.
Netepelné účinky

Netepelné účinky elmg. polí se vysvětluji elektromagnetickou indukcí, kterou vznikají v ozařovaných tkáních iontové proudy. Vlivem těchto proudů se mění biologické vlastnosti buněčných membrán - permeabilita a dráždivost. Indukční jevy se uplatňují na vodivých částech organismu: centrální a autonomní nervový systém, kardiovaskulární systém, sekretorický (vyměšující) aparát a endokrinní soustava.

Dlouhodobé ozařování elmg. polem o malých výkonových hustotách se projevuje především na stavu CNS. Změny mají charakter subjektivních stesků astenického typu (tělesné slabosti): vyčerpanost, únava, pokles koncentrace pozornosti, poruchy spánku, bolesti hlavy ap. Objektivně se zjistí třes prstů v předpažení, zvýšená potivost, lámání nehtů, padání vlasů.
Biologické účinky elmg. polí i podprahových hustot absorbovaného výkonu jsou kumulativní. Dokazují to registrovaná poškození očí po přímém ozáření. Poruchy krevního oběhu se projevují zvýšeným průtokem, snížením tlaku krve, změnou tepové frekvence.

5.2 KRÁTKOVLNNÁ DIATERMIE

Vysokofrekvenční ohřev tkání je využíván již více jako 100 let. Pojmem *diatermie* označujeme definovaný způsob zavedení vf energie do organismu při terapii ohřevem. Podle aplikovaných frekvencí rozdělujeme diatermii na krátkovlnnou, vkv a mikrovlnnou. Přidělené pracovní frekvence:

- 13,56 – 27,12 – 40,68 – 433,92 MHz a
- 0,915 – 2,45 – 5,80 GHz.

Požaduje se, aby tyto frekvence byly dodrženy s tolerancí ± 0,05 %. Aplikované výkony u jednotlivých zařízení bývají v rozmezí 20 ÷ 300 (400) W. Rozhodující je terapeutická dávka jako součin výkonu a doby ozařování. Doba aplikace se pohybuje od 2 do 15 minut.

![Obrázek 5.4: Srovnání účinků diatermii](image)

Obrázek 5.4: Srovnání účinků diatermii

Biologické tkáně představují pro šířicí se elmg. vlnu vrstevnaté, nehomogenní dielektrikum. Podle charakteru, typu převažujících tkání při ohřevu a principu zavedení vf energie do tkání rozlišujeme u kv diatermie kapacitní a induktivní metodu. Srovnání s vkv diatermii a aplikací ultrazvuku je uvedeno na Obrázek 5.4. Tkáně, které jsou více prokrvené (svaly) se ohřívají lépe induktivní metodou, klouby a podkoží potom kapacitní metodou. Hloubka vniku do tkání se výrazně uplatňuje u vkv diatermie.
Na **Obrázek 5.5** je zobrazeno srovnání relativního oteplení tkání v závislosti na vzdálenosti elektrod od tkáňů u kapacitní metody kv diatermie. Nejблиžší dovolená vzdálenost elektrod od kůže – povrchu ohřívaného objektu je 1,5 cm (popálení). Tato vzdálenost bývá dodržena aplikací elektrod ve skleněném či plastovém obalu.

![Diagram relativního oteplení tkání v závislosti na vzdálenosti elektrod](image).

Obrázek 5.5: Relativní oteplení tkání v závislosti na vzdálenosti elektrod

Velikosti elektrod, jejich náklonem a vzdáleností od kůže lze tvarovat, případně *homogenizovat pole* prostupující do tkání. Průměry elektrod bývají: 40, 85, 130 nebo 170 mm. U většiny elektrod je možné nastavit vzdálenost vlastní elektrody od ochranného obalu. Kromě těchto diskových elektrod užívají se i speciálně tvarované elektrody (vaginální, rektální) a elektrody „polštářkové“ v prýžové izolaci o rozměrech 80 x 140, 120 x 180, 180 x 270 mm. Pro induktivní metodu se využívá mnohonásobně izolovaný vř kabel délky cca 3m nebo cívka ve formě *monody* či *diploidy*.

Velikost dávek se řídí výhradně podle subjektivních pocitů pacienta při nastavování výkonu zařízení. Vzhledem k tomu, že při diatermickém ohřevu se jedná o prolongovaný účinek, existuje riziko poškození ozařovaných tkání či celého organismu. Pro ozáření biologických tkání elmg. polem vyšších výkonů již také platí podmínky 1. fáze akutní nemoci z ozáření: nevolnost, zvýšená teplota, bolest hlavy případně krvácení.

Konstrukční řešení

Realizace zařízení pro kv nebo vkv diatermii jsou závislé na pracovní frekvenci a požadovaných výkonech při aplikacích. Svou roli sehrává také komfort pacienta i obsluhy. Vysokofrekvenční generátory, jako základní funkční bloky, mohou být řešeny i jako.
výkonové oscilátory s odpovídajícími výkonovými prvky a nezbytným napájením. Jako každé terapeutické zařízení musí i všechna zařízení pro vř ohřev tkání mít terapeutické hodiny. S ohledem na vř rušení (EMC) musí všechna zařízení být stíněna a odpovídajícím způsobem odrušena (výkon na harmonických frekvencích).

Zásadním technickým problémem však je obvod pacienta. Biologická tkání mezi elektrodami představuje pro koncový stupeň vř generátoru zatěžovací impedanci, která se však změnou vzdálenosti mezi elektrodami a povrchem objektu mění. Obrázek 5.6: Dochází tím k rozlaďování koncového stupně a při velkých výkonech ke ztrátám i zničení aktivních prvků.

Obrázek 5.6: Obvod pacienta

Impedance obvodu pacienta je závislá na velikosti užitých elektrod, vzdálenosti kůže-elektroda, druhu aplikace a konečně i na stavu a vlastnostech ozařovaných tkání. Vzdálenost kůže-elektroda se v hrudní oblasti nejvíce mění pohyby při dýchání. Do impedance obvodu pacienta je třeba zahrnovat i impedanci přívodních vř kabelů k elektrodám, které bývají 85 ÷ 115 cm dlouhé. Tyto kably mají samostatně volně viset nebo být uloženy na izolační podložce.

Principiální blokové schéma KV diatermie je uvedeno na Obrázek 5.7. Jedná se o vř výkonový generátor pracující na frekvenci 27,12 MHz s výkonem 400 W. Regulace výkonu se provádí změnou napájecího napětí výkonových triod výkonového oscilátoru. Automatické dolaďování obvodu pacienta do rezonance se provádí motorkem ovládaným signálem úmerným změně anodového proudu elektronek. Indikovaný vř výkon, měřený měřicí hlavou, je však pouze výkonem dodávaným do obvodu pacienta. Část se ho přemění v teplo při v pacientovi, část se změní ve ztráty v obvodu pacienta. Regulační zesílovač s transduktorem (přesytkou) udržuje žhavicí napětí elektronek nezávisle na kolísání síťového napětí. Většina straších typů zařízení pracuje v kontinuálním režimu – nemodulovaná nosná (CW). Novější provedení využívají i amplitudovou modulaci nebo klikování signálu.
5.3 VKV A MIKROVLNNÁ DIATERMIE

Pro vkv diatermii byla vyhrazena frekvence 433,92 MHz (69cm). Na rozdíl od kv diatermie, kde je využíváno blízké pole šířící se elmg. vlny, je u vkv diatermie využíváno pole vzdálené.

Většina dodávaných zařízení využívá impulsní provoz, u kterého se předpokládá pronikání do hloubky tkání či orgánů.

Mikrovlnná diatermie využívá frekvence 2,45 GHz (12,25 cm) pro prohřev vodivých tkání - svalů. Poloviční hloubka vniku je 10 ÷ 12 mm. Výkonový vf generátor je osazen magnetronem, aplikátor je tvořen zářičem - anténou v reflektoru. Z bezpečnostního hlediska je reflektor plastový.
Rozměry zářičů mohou být:
- kuželové o průměrech 10 ÷ 20 cm,
- obdélníkové s výstupním oknem 10 x 30 cm,
- velkoplošné (lomené odrazové zrcadlo) 5 ÷ 15 cm od těla.

5.4 ELEKTROTOMIE

Účinky vf elektromagnetických polí jsou aplikovány nejen pro ohřev tkání a orgánů, ale i pro řezání, koagulaci a vysoušení.

Při ohřevu do 45 °C jsou cytochemické změny ve zdravých tkáních reverzibilní, obranný mechanismus se projeví zvýšeným průtokem krve. U nádorových tkání zhruba větších než 2 cm se však obranný mechanismus hroutí při 41 °C. Při teplotách nad 45 °C dochází k irreverzibilním změnám v buněčných strukturách a tím k jejich odumření. Při teplotách mezi 45 a 60 °C tvrdnou proteiny v buňkách a dochází tak ke koagulaci tkání. Při teplotách do 100 °C dochází k evaporaci vody z buňek a proces je označován jako vysoušení. Při zvyšování teplot nad 100 °C se pevný obsah tkání redukuje na karbon a proces označujeme jako karbonizaci.

Elektrotomie vf proudem

- **Monopolární mod**
 Proud protéká od malé aktivní (diferentní) elektrody, ovládané chirurgem, tělem pacienta k velké rozptýlovací (indiferentní) elektrode pod pacientem. Vysoká hustota proudu v okolí aktivní elektrody způsobuje řezání tkání nebo její koagulaci. Malá hustota proudu v okolí rozptýlovací elektrody nezpůsobí poškození přilehlých tkání.
 Aplikace: řez i koagulace.

- **Bipolární mod**
 Proud protéká pouze přes tkání sevřené mezi dvěma elektrodami - hroty pinzety či peánu. Pro dosažení stejného koagulačního efektu se vystačí s menším výkonem, ve srovnání s monopolárním modem až o 3 řády. Aplikace: jen pro koagulaci.

Schematický náčrtek elektrochirurgického výkonu při monopolárním modu je naznačen na Obrázek 5.8.

Terapeutická a protetická technika
Obrázek 5.8: Princip vf chirurgie

Konstrukční řešení

Řezy tkání se realizují zásadně při monopolárním módu. Aplikované výkony dosahují 400 (500) W. Pracovní frekvence systémů bývá v rozsahu 250 – 1.750 kHz, výjimečně do 3 MHz. Dosahovaný vF proud bývá 3 ÷ 4 A při max. hustotě proudu 200 mA/cm². Výstupní napětí přístroje bývá 0,2 – 5 (6) kV. Tvar generovaného signálu je pro tavný řez nemodulovaná nosná (CW) nebo jen mírná modulace. Při koagulaci se aplikují aperiodické kmity se střídají 1:5. Sdružený režim označovaný „mix“ využívá kombinovaný tvar generovaného signálu. Principiální blokové schéma zapojení vF elektrochirurgického přístroje je na Obrázek 5.9.

Obrázek 5.9: Blokové schéma elektrochirurgického přístroje

Velikosti aplikovaného vF proudu a tím i výkonu jsou závislé na odporu - impedanci tkání podle klinických oborů. Pohybují se v rozsahu od 0,4 do 4,5 kΩ.
Ovládání režimu funkcí elektrochirurgického přístroje je možné v zásadě trojím způsobem: Spínači na panelu, spínači v držadle aktivní elektrody a nožním spínačem. Vf výkonové zesilovače je možné v těchto zařízeních realizovat s:

- elektronkami
 napájení 1,6 kV, CW režim,
- bipolárními tranzistory
 paralelní řada ve třídě A,
- bipolárními i MOSFET tranzistory
 hybridní kaskádní zesilovač,
- MOSFET tranzistory
 mostové zapojení výkonových MOSFETů.

Při provozu vf chirurgických přístrojů existuje nebezpečí jak pro pacienta, tak pro operační tým. Nejčastěji se jedná o elektrické šoky a nechtěné popáleniny. Může dojít i k nežadoucím neuro-muskulárním stimulacím či ohřevu kovových implantátů. Interferenci s funkcí kardiostimulátorů je třeba předejít. Teplota v okolí indiferentní elektrody nemá převyšit 45°C.

Při aplikovaných výkonech větších než 50 W je dle doporučení IEC nutná kontrola funkcí zařízení. Ta spočívá v:

- kontrole odporu kabelů elektrod, který nesmí být převyšen 1 kΩ (alarm),
- kontrole napětí mezi indiferentní elektroodou a zeměním (operačního stolu),
- kontrole přerušení zemního obvodu měřením a porovnáním proudů do aktivní elektrody (alarm).

Naprostou samozřejmostí musí být výhradně přístroje. Mikroprocesorové řízení zapíná výstupní výkon jen při kontaktu aktivní elektrody se tkání.

Provedení elektrod

Aktivní monopolární elektroda je tvořena malou čepelí se symetrickým ostřím fixovanou do izolovaného držadla. Hrany ostří trojúhelníkového tvaru nesmí mechanicky řezat tkáň. V držadle elektrody jsou odpovídající funkční spínače pro přepnutí z řezu na koagulaci. Dalšími tvarovými jsou jehly, smyčky nebo kuličky různých rozměrů. Při endoskopických nebo laparoskopických chirurgických výkonech se řezy realizují v bipolárním modu s další aktivní elektroodou.

Hlavní funkcí indiferentní elektrody je odvod výšku proudu do elektrochirurgického přístroje bez poškození pacienta. Dosahuje se to velkoplošnými elektroodami přiloženými na kůži pacienta na opačné straně těla při chirurgickém výkonu. Velká plocha této elektrody, min. 180 cm², redukuje hustotu výšku proudu na úrovni, která způsobuje minimální ohřev tkání. V současné době se aplikují dva typy těchto elektrod: odporové a kapacitní. V obou případech je tenká kovová folie na vnější straně izolována a obklopena adhezivní pěnovou hmotou. Odporový typ elektrody se aplikuje s elektricky vodivým gelem, kapacitní typ s nevodivým gelem. [2]
6 Radioterapie nuklidy, urychlenými elektrony

Pod ionizující záření řadíme různá záření vlnového i korpuskulárního charakteru s dostatečnou energií umožňující přímo nebo nepřímo ionizovat hmotné prostředí, kterým prochází. Vlnový charakter má elektromagnetické záření - tok elementárních kvant vlnové energie, fotonů. Využívanými typy záření jsou: charakteristické RTG záření, záření gama a brzdné záření. Korpuskulární záření je tvořeno časticemi s nenulovou hmotností. Může být tvořeno nabitými nebo neutrálními časticemi (elektrony, protony, ionty, štěpnými fragmenty nebo neutrony). Energie potřebná ke vzniku iontů je zpravidla 0,1 ÷ 10 MeV.

Zdrojem ionizujícího záření může být radionuklid nebo speciální zařízení - urychlovač částic. Zdroje záření proto rozdělujeme na:

- **Radionuklidové** (více jak 1 000)
 - přirozené radionuklidy (atonymy prvků s atomovým číslem větším než 83),
 - uměle připravené radionuklidy (bombardováním stabilních izotopů urychlenými časticemi).
- **Nenuklidové** (všechny urychlovače nabitých častic)
 - svazky elektronů,
 - brzdné záření (konvertor Pb, W, Ta, U, Au).

Každý zdroj záření lze charakterizovat emitovaným druhem záření, energetickým spektrum a vydatností - tedy rychlostí a směrovou charakteristikou emise.

Vydatnost radioizotopového zdroje záření je dána jeho aktivitou [Bq]. Emise záření tohoto zdroje je do všech směrů izotropní. Vlivem spontánního rozpadu klesá jeho aktivita s časem podle *exponenciálního zákona*:

\[
A = A_0 \cdot e^{-\lambda t} \tag{6.1}
\]

kde

\[A \quad \text{aktivita},\]

\[\lambda \quad \text{rozpadová konstanta související s poločasem rozpadu nuklidu}\]

\[t_{1/2} = \frac{\ln 2}{\lambda}. \tag{6.2}\]

Obě veličiny jsou pro uvažovaný radionuklid charakteristické.

V certifikátech zářičů se uvádí i jejich expoziční vydatnost, což je *expoziční rychlost* (příkon), kterou zářič dává v definované vzdálenosti (1 m).

Vydatnost urychlovače, jako zdroje nabitých častic, se vyjadřuje proudem těchto nabitých častic - nejčastěji elektronů [A].

Účinky záření na tkáň

Příčiny změn biologických vlastností tkání a živých organismů po aplikaci ionizujícího záření jsou podobné těm, které vedou ke změnám chemických či fyzikálních vlastností látek. Jedná se tedy o excitaci atomů a molekul, jejich ionizaci a s tím spojené generování sekundárních elektronů, vznik volných radikálů H, OH, HO₂ (hydroperoxylový) a tím vyvolané změny v buňkách.

Různé druhy ionizujícího záření vyvolávají v buňkách různě postradiační stavy na atomární i molekulární úrovni. Účinky záření na živé tkáně jsou vysvětlovány několika koncepcemi:
- teorií nepřímého účinku (radikálová teorie),
- teorií citlivého objemu buňky (přímého účinku),
- teorií dvojněho radiačního účinku,
- molekulárně biologickou teorií.

Celkový účinek záření na organismus se vyjadřuje letální dávkou LD₅₀. Je to dávka, při které polovina ozářených organismů zmírá. Pro člověka je LD₅₀ = 5 Gy.

Nejvýraznějším specifickým účinkem ionizujícího záření na živé organismy je jeho vliv na genetický aparát buněk. Jedná se o přímou interakci záření s molekulami DNK (deoxyribonukleové kyseliny) v chromozomech. Genetické poruchy - mutace genů se přenášejí do dalších generací a mohou být vyvolány i velmi malými dávkami záření. Navíc, opakované malé dávky mají kumulativní charakter účinku.

Na úrovni tkání a orgánů klesá radiosenzitivita (citlivost vůči záření) zhruba v tomto sledu: kostní dřeň, lymfoidní orgány, pohlavní žlázy, střeva, kůže, epitheliální výstelky, tenké cévy, chrupavka, kost, dýchací ústrojí, žlázy zažívacího traktu, endokrinní žlázy, svaly a centrální nervový systém.

Účinky ionizujícího záření na lidský organismus dělíme na časné a pozdní, somatické (jedinec) a genetické (potomstvo), stochastické a nestochastické.

- **Časné účinky**
 - akutní nemoc z ozáření,
 - akutní lokální změny (kůže),
 - poškození plodu.
- **Pozdní účinky**
 - lokální změny (oko, kůže),
 - zhoubné nádory,
 - genetické změny.
Nejzávažnějším projevem časného poškození organismu je akutní nemoc z ozáření. Rozvíjí se po celotělové expozici vyšší dávkou. Podle velikosti dávky se v klinickém obrazu objevují fáze:

- **hematologická**

Při celotělové dávce 3 ÷ 6 Gy, příznaky jsou nevolnost, zvracení, krvácení, průjmy,
- **gastrointestinální**

Při celotělových dávkách vyšších než 10 Gy, projevující se prouchování hospodářského systému, zánikem střevní výstelky, střevní zástavou. Úmrtí - kolaps krevního obrazu,
- **nervová**

Při dávkách kolem 50 Gy, kdy po psychické dezorientaci, poruše koordinace pohybů, křečích a hlubokém bezvědomí nastává smrt. Selhává kardiovaskulární a respirační systém, nastává edém (otok) mozku.

Stochastické účinky záření se s jistou pravděpodobností objevují po každé expozici - hovoříme o poškození bez prahu (pozdní účinky). Nestochastické účinky záření se objevují až po expozici definované velikostí - poškození s prahem (časné účinky).

Proti těmito velice negativním účinkům ionizujícího záření na lidský organismus působí reparační procesy samotného organismu. Kromě toho některé látky, zvláště ty co obsahují sulfhydrylovou skupinu (SH) reagující s radikály, mají radioprotektivní (ochranný) účinek. Při každé aplikaci ionizujícího záření na organismus je třeba zvážit radiační riziko.

6.1 PRINCIPY RADIOTERAPIE

Radioterapie využívá radiačních účinků ionizujícího záření k léčebným účelům. Jedná se zvlášť o léčení maligních (zhoubných) nádorů, kde se využívá poznatku vyšší citlivosti nádorové tkáně vůči záření. Je známo, že zhruba 60% všech rakoviných onemocnění vyžaduje radioterapeutickou léčbu. Tato terapie se zpravidla kombinuje s chirurgickým výkonem a chemoterapií. Aplikuje se však jen na tumory radiosenzitivní. Existují však i radiorezistentní tumory jako: osteosarkom (nádor kosti), fibrosarkom (nádor vazivové tkáně), melanom (nádor z pigmentových buněk).

Při radioterapii nádorových onemocnění se postupuje s ohledem na aktuální stav pacienta zásadně dvojím způsobem:

1. **Radikální radioterapie**

 Může být použito k kompletnímu odstranění nádoru. Postup vyžaduje intenzivní ozařování (5x týdně) s dávkami po 2 Gy, celkovou dávkou 40 ÷ 60 Gy.

2. **Paliativní radioterapie**

 Jejím cílem je zlepšení chování pacienta (tišení bolestí). Dávkování se typicky zvolí 2 Gy, celková dávka 20 ÷ 40 Gy.

Kromě léčení zhoubných nádorů se ionizujícím zářením lze i některá nezhoubná onemocnění jako: degenerativní procesy kostí a kloubů, některé dermatózy (kožní choroby). Aplikují se dávkové hodnoty 1 ÷ 3 Gy, 2 ÷ 3 krát za týden a to ještě v zcela výjimečných případech.
V souvislosti s aplikovanými terapeutickými dávkami je třeba se zmínit i o nejvyšších přípustných dávkách pro zdravotnický personál. Výhláškou č. 184/1997 Sb. SÚJB o požadavcích na zajištění radiační ochrany jsou definovány nejen kategorie pracovníků v oboru ionizujícího záření a přípustné limity ozáření, ale také technické a organizační požadavky na zabezpečení rozumně dosažitelných úrovní radiační ochrany - strategie ALARA. Základním limitem pro pracovníky, jako součet efektivních dávek zevního ozáření a úvazků efektivních dávek vnitřního ozáření, je hodnota 100 mSv za 5 po sobě následujících let a max. 50 mSv za rok. Průměrný ekvivalentní dávka na 1 cm² kůže (ruce, nohy) je 500 mSv za rok. Odvozeným limitem pro vnitřní ozáření radionuklidy při vdechnutí je hodnota 20 mSv s konverzním faktorem pro příjem odpovídajícího radionuklidu za rok (tab. 1 a 4, přílohy č. 3 vyhlášky).

Technické a organizační podmínky radiační ochrany personálu bývají vymezeny automatickým zabezpečovacím zařízením a provozním řádem ozářovny. Jednou z podmínek je také labyrintový systém vstupu do ní. Neposledním je systém dozimetrické kontroly. Kromě dávek záření jsou sledovány i koncentrace radiolytických produktů v ozdušném ozářovně - ozonu a oxidů dusíku. Nejvyšší přípustné koncentrace (NPK) dle ČSN jsou pro ozon 100 µg/m³ a pro oxidy dusíku 5 mg/m³. Součástí ozářovny proto musí být výkonné odvětrávací zařízení (s podtlakovou hermetizací).

6.1.1 Vnější ozářování

V radioterapii je technika vnějšího ozářování častější než aplikace zářičů do tělních dutin. Ke vnějšímu ozářování se užívají jak radionuklidové zdroje záření gama 60Co a 137Cs, tak nenuklidové zdroje s RTG svazky, urychlenými elektrony či brzdným zářením.

Volba velikosti zdroje gama záření nebo energie urychlených elektronů se řídí především požadovaným dosahem a rozsahem aplikace. Rozzeznáváme proto ozářování:

a) na krátké vzdálenosti - povrchová terapie,
 kdy se záření aplikuje na nádory uložené do 5 cm pod povrchem.
 Využívá se:
 - radionuklidových zářičů 60Co, 137Cs,
 - RTG záření při napětí do 140 kV,
 - urychlených elektronů s energií 7 ÷ 10 MeV,

b) teleterapii (cca 1 m) - hloubková terapie,
 kdy se požaduje větší dosah.
 Využívá se:
 - velkých radionuklidových zářičů,
 - RTG záření při napětí 200 kV a více,
 - urychlených elektronů s energií větší než 15 MeV,
 - brzdné záření betatronů.

Srovnání velikosti dávek a dosahu svazků RTG záření a svazku elektronů je na Obrázek 6.1.

Při povrchové terapii se aplikují nízkoe energetické záření, která jsou absorbována v povrchových vrstvách ozařovaných tkání. U hloubkové terapie se využívá záření vyšších energií pro zajištění požadovaného dosahu, [11], [25].
Obrázek 6.1: Srovnání svazků záření

Energie všech užívaných radionuklidových zdrojů jsou tabelovány. Pro rentgenové záření byl zaveden pojem *efektivní energie* jako energie monoeenergetického záření se stejným penetračním účinkem jako má užité spojité záření. Energie urychlených elektronů je charakterizována nejpravděpodobnější energií před výstupem z urychlovače a nejpravděpodobnější energií na povrchu ozařovaného objektu (bývá až o 10% menší).

Typické parametry závislosti dávky záření na hloubce užívané v radioterapii jsou uvedeny na obrázku Obrázek 6.2.

Zde znamí:

- \(R_p \) ... praktický dosah,
- \(R_{50} \) ... poloviční dosah,
- \(R_{80} \) ... terapeutický dosah,
- \(R_{100} \) ... dosah při maximální dávce.

Popis svazku záření při vstupu do tkání a do ložiska nádoru je uveden na obrázku Obrázek 6.3. Povrchová dávka je dávkou na kůži. Ta je rovna dávce ve vzduchu těsně nad kůží zvětšenou o dávku ze záření rozptýleného ve tkání. Maximální a minimální ložiskové dávky jsou dávky při vstupu a výstupu záření z ložiska nádoru. Rozdíl obou těchto dávek by měl být co nejmenší, protože požadujeme co největší homogenitu ozáření ložiska. Naopak spád velikosti dávky z ložiska do okolních tkání by měl být co největší. Maximální dávka v ložisku by měla co nejvíc sledovat tvar ložiska nádoru. Výstupní dávka je dávkou při výstupu záření z tkání organismu.
Obrázek 6.2: Parametry dávky v závislosti na hloubce

Obrázek 6.3: Popis svazku při hloubkovém ozařování

Vlastní techniku ozařování dělíme na:
- statickou terapii,
- pohybovou terapii.

Statická terapie

Pohybová terapie

Využívá buď pohyb zdroje záření nebo pohyb pacienta v průběhu ozařování. Rotační terapie s rotací pacienta nebo zdroje záření, kyvadlová terapie. Všechny uvedené způsoby ozařování umožňují dosažení vysoké dávky v ložisku nádoru, její prudký spád v okolí a minimální radiační zátěž kůže.

Srovnání distribuce dávky v ložisku a v okolních tkáních při rotační terapii, technice křížového ohně a ozáření malého ložiska velkým polem je na **Obrázek 6.4**.

Obrázek 6.4: Srovnání distribuce dávky různými technikami ozařování

Obrázek 6.5: Izodozní křivky rtg záření

Stanovení skutečné dávky záření v hloubce tkáně je obtížné. Modelová měření se provádí na fantomech naplněných látkami blízkými svými absorpcími vlastnostmi tkáním lidského těla (voda, parafín). Mapa izodozních křivek pro RTG záření o energii 200 keV, filtrované vrstvou 1 mm Cu a 1 mm Al se vzdáleností ohnisko-kůže OK = 50 cm, je uvedena
na Obrázek 6.5. Pokud bylo ozáření tkáně realizováno za podmínek příslušných dané mapě, potom je možné z izodóz přimo odečíst dávku, kterou byl odpovídající orgán ozářen. Znalost izodozních křivek je však podstatná i při plánování radioterapie a dávek v nádoru i mimo něj.

6.1.2 Vnitřní ozařování

Zdroji elektromagnetického záření mohou být v zásadě všechny radionuklidy, které se při své radioaktivní přeměně zbavují nadbytečné energie v atomovém jádru emisí kvant gama záření. Mohou to být všechny přirozené radionuklidy - atomy prvků s atomovým číslem větším než 83. Dále to mohou být uměle připravené radionuklidy vytvářené bombardováním stabilních izotopů urychlenými částicemi nebo izolací ze štěpných produktů. Zářičům gama a beta je více než 1 000. Pro využití jako zdrojů záření musí však splňovat tyto požadavky:
- dostatečně velká energie emitovaného záření pro zajištění pronikavosti a homogenity ozáření,
- dostatečně dlouhý poločas rozpadu radionuklidu,
- příměřená forma přípravy radionuklidu (hermetizace).

V praxi těmto požadavkům vyhovují zvláště radioizotopy: 60Co, 226Ra, 137Cs, 198Au, 32PO$_4$$^{3-}$, 131I, 32P, 182Ta, [11].

Brachyradioterapie je souborem ozařovacích technik uplatňujících kontakt zdroje záření s nádorem. Jedná se o techniku:
- zavedení zdroje záření přimo do ložiska nádoru formou punktury (koloidní forma, jehly, dráty),
- implantace do nádoru,
- metabolická cesta - vpravení do krevního oběhu přímo nebo přes trávicí systém.

Aplikace radionuklidu může být na dobu určitou (182Ta) nebo neomezenou (198Au). Zářiče mohou být uzavřené nebo otevřené - radiofarmaka. Forma zářičů může být:
- roztok či suspenze 198Au, 131I, 32P, 32PO$_4$$^{3-}$,
- plast 60Co,
- drát 182Ta, 226Ra.

V klinické praxi se využívají jen zářiče beta a gama. Neužívají se alfa zářiče pro malý dosah (µm) a vysokou toxicitu. Dávkové konstanty některých gama zářičů jsou uvedeny v Tabulce 6.1. Zvláštním případem je radionuklid 252Cf (poločas 2,5 r), který emituje neutrony vysokých energií. V posledních letech nahrazuje při intrakavitárních (uvnitř dutin) aplikacích zářič 226Ra.

Pro zkvalitnění terapie zářením a pro zvýšení radiační bezpečnosti personálu při intrakavitárních aplikacích byl zaveden systém afterloadingu. Do dutiny těla je aplikována sonda spojená se stíněným zásobníkem zářičů nejčastěji ve tvaru kuliček. V zásobníku jsou však i rozměrové napodobeniny zářičů z neaktivního materiálu. Odpovídajícím programem je sonda naplněna kombinací kuliček, čímž je dosaženo požadovaného prostoru rozložení záření s kontrolovanou dobou aplikace. Užívanými gama zářiči jsou: 60Co, 137Cs, 192Ir. Neutronové zářiče pak 252Cf. Aplikovaný dávkový příkon může být od 5 mGy/min. do 3 Gy/min.
Tabulka 6.1: Dávkové konstanty některých gama zářičů

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Poločas přeměny</th>
<th>Dávková konstanta</th>
<th>Poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rok</td>
<td>mSv · m²</td>
<td>GBq · h</td>
</tr>
<tr>
<td>60Co</td>
<td>5,27</td>
<td>0,308</td>
<td></td>
</tr>
<tr>
<td>110mAg</td>
<td>0,68</td>
<td>0,357</td>
<td></td>
</tr>
<tr>
<td>109Cd</td>
<td>1,27</td>
<td>0,037</td>
<td></td>
</tr>
<tr>
<td>134Cs</td>
<td>2,06</td>
<td>0,208</td>
<td></td>
</tr>
<tr>
<td>137Cs</td>
<td>30</td>
<td>0,077</td>
<td></td>
</tr>
<tr>
<td>226Ra</td>
<td>1600</td>
<td>0,201</td>
<td></td>
</tr>
</tbody>
</table>

etalon nukleární med.
Pt obal tl. 0,5 mm

6.2 URYCHOVAČE ELEKTRONŮ

Z terapeutického hlediska řádíme urychlovače elektronů spolu s RTG ozařovači mezi nenuklidové zdroje záření. Vlastní elektronové záření, jako forma beta záření, může být vytvářeno zářením z jader atomů (radionuklidů - 90Sr, 90Y) nebo svazky elektronů z urychlovačů.

Urychlovače elektronů se obecně dělí na nízko, středně a vysokoenergetické podle energie v generovaném svazku. Ta může být v rozsahu 0,15 ÷ 45 MeV podle typu záření.

Principiálně se urychlovače dělí na:
- urychlovače s přímým, jednorázovým urychlením,
- urychlovače s nepřímým, mnohonásobným urychlením.

Poslední jmenované délka také na urychlovače
- kruhové (betatrony),
- lineární.

Podstatou vysokofrekvenčních lineárních urychlovačů jsou lineárně uspořádané mikrovlnné rezonátory buzené na frekvenci 2 ÷ 3 GHz, impulsy 50 ÷ 130 kV se šíří 5 ÷ 10 µs. Energie urychlených elektronů pro terapeutické aplikace bývá 4 ÷ 20 MeV, u svazku fotonů 4 ÷ 23 MeV. Potřebné budicí výkony dosahují až 5 MW. Účinnost přeměny elektrické energie na energii zářivou však je max. 10 %, [25]. Svazek urychlených elektronů je formován elektromagnetickou optikou. Průměr jeho stopy může být nastaven na 6 ÷ 25 cm (u fotonů 0,5 ÷ 40 cm) ve vzdálenosti 1 m od výstupního okénka ke kůži.

Lineární urychlovač urychluje svazek elektronů na lineární dráze. Elektrony jsou získávány termoemisí žhaveného vlákna. Po urychlení elektromagnetickým polem v urychlovači strukturu vytváří elektronový nebo fotonový léčebný svazek záření. Z konstrukčního hlediska musí tedy lineární urychlovače zajistit:
- generování elektronů elektronovým dělem,
- tvorbu pulsů mikrovlnného signálu pro elektromagnetické pole v urychlovači struktuře,
- vytváření toku urychlených elektronů v urychlovači struktuře,
- tvarování terapeutického svazku.
Elektronové dělo je tvořeno žhavenou katodou a mřížkou. Anodou je počátek urychlovací struktury. Katoda je tvořena wolframem obohaceným baryem. Trvalým žhavením jsou z jejího povrchu uvolňovány elektrony, které jsou v jednotlivých pulsech přitahovány mřížkou a dostávají se na vstup urychlovací struktury.

Pro dostatečné urychlení elektronů je třeba vytvořit v urychlovací struktuře velmi silné vysokofrekvenční pole. To je možné realizovat jen impulzně. Ke generování radiofrekvenčních impulsů o šíři $5 \div 10 \mu s$ na frekvenci 3 GHz s výkonem do 5 MW slouží dutinové rezonátory - klystory a magnetony.

Klystron je mikrovlnný výkonový zesilovač pracující s vn impulsy až 130 kV, ovládaný mikrovlnným signálem nízké úrovně na frekvenci 3 GHz. Zpravidla se užívá dvoudutinový klystron. Katoda klystronu injektuje elektrony do první dutiny, kam je přiváděn mikrovlnný signál, který moduluje tok elektronů. Ten je urychlen a vstupuje do druhé dutiny, kde indukuje silné elektromagnetické pole téže frekvence. Energie tohoto pole je potom odváděna vlnovodem do urychlovací struktury.

Magnetron je mikrovlnným výkonovým generátorem. Tok generovaných elektronů je urychlen silným magnetickým polem kolmým na příčný řez magnetronu. Po průchodu elektronů soustavou dutin je v anodě indukován proud vysílající mikrovlnné elektromagnetické pole do vlnovodu.

Urychlené elektrony opouštějí urychlovací strukturu ve formě úzkého rovnoběžného svazku. Ten prochází soustavou cívek, která jej koncentruje a navádí do bending - stáčecího magnetu. Tento magnet stáčí svazek po kruhové dráze o 90° nebo 270° a vytváří tím energetický filtr. Dráha elektronů s různou energií a rychlostí se v magnetickém poli zakřivuje s různým poloměrem. Jen elektrony s požadovanou energií potom dopadají na výstupní okénko urychlovače.

Principiální blokové schéma lineárního urychlovače je na Obrázek 6.6. Kromě bloků, jejichž funkce je zřejmá, je třeba upozornit na výstupní okénko urychlovače a nezbytné vakuum v urychlovací struktuře. Výstupním okénkem se vytváří svazek urychlených elektronů do okolí. Zpravidla je zhotoveno z Al nebo Ti plechu o tloušťce 15 ÷ 40 µm. Tato tloušťka je kompromisem mezi malými ztrátami energie elektronů absorpcí i rozptylem ve hmotě okénka a dostatečnou mechanickou pevností i vakuovou těsností udržující přetlak okolní atmosféry. Významný je i požadavek na tepelnou stabilitu okénka, která je zabezpečována soustavným chlazením vzduchem či vodou v trubkovém rámě. Vakuum v urychlovací struktuře se zajišťuje rotačními a iontovými vývěvami na úrovni $1,3 \cdot 10^{-3} ÷ 1,3 \cdot 10^{-5}$ Pa, [25].

Obrázek 6.6: Blokové schéma lineárního urychlovače

Klinické využití jak urychlovačů, tak radionuklidových ozařovačů je řízeno a kontrolováno verifikačními systémy. Pro pacienta zabezpečují korektnost nastavených parametrů svazku, polohu a nastavení portálu (gantry) i ozařovacího stolu. Veškerá data včetně dávek jsou ukládána do odpovídajících databází programů a upravena pro tisk ozařovacích protokolů. Nezbytné plánování ozařovacích podmínek bylo již diskutováno.

Z hlediska bezpečnosti práce obsluhy je třeba upozornit na to, že každé pracoviště s urychlovačem elektronů nebo iontů patří do kontrolovaného pásm. Maximální přípustná dávková rychlost je 25 µGy/hod. Významná je i podmínka dostatečného větrání s ohledem na vznikající ozon a oxidy dusíku. Koncentrace v ovzduší ozařen, podobně jako ve skladu radionuklidů, nesmí překročit u O₃ hodnotu 100 µg/m³ a u NOₓ 5 mg/m³, [25].
6.3 LEKSELLŮV GAMA NŮŽ

Aplikace izocentricky fokusovaného gama záření z velkého počtu radionuklidových zdrojů do objemu několika krychlových milimetrů je stereotaktickou radiochirurgií (SR). Cílem je vyvolání odpovídajícího radiobiologického efektu v ozařovaném objemu při současném štětění okolní zdravé tkáne. Princip SR poprvé formuloval švédský neurochirurg Leksell (1951) pro výkony na mozkové tkáni, [28].

Při stereotaktické radiochirurgii jsou ozařované objemy malé a terapeutický výkon se realizuje obvykle jedinou frakcí. Požadavky tolerance okolní zdravé tkáne limitují velikost ozařovaného ložiska na maximální průměr 3 ± 4 cm. Při terapii některých mozkových nádorů a zvláště pak u dětí se aplikuje stereotaktická radioterapie formou frakcionovaných dávek.

V současné době lze SR realizovat v zásadě třemi nezávislými metodami:
- izocentricky fokusovaným gama zářením mnoha radionuklidových zdrojů,
- izocentricky fokusovaným RTG zářením z lineárního urychlovače,
- těžkými nabitými částicemi z urychlovače částic.

Cílem stereotaxe je přesná prostorová lokalizace vymezeného objemu v libovolné oblasti mozku přesně definovaným 3D koordinací systémem. Ten může využívat kartézské, cylindrické nebo sférické souřadnice. K zaměření ozařovaného objemu mohou být využity 3D zobrazovací metody:
- RTG počítačová tomografie (CT),
- nukleární magnetická rezonance (NMR),
- pozitronová emisní tomografie (PET).

V klinické praxi je stereotaktický systém realizován stereotaktickým rámem, který je zpravidla invazivně fixován k lebce pacienta, čímž je zabezpečena jeho nemenná poloha vzhledem k mozkovým strukturám. Při neinvasivní aplikaci se rám fixuje pomocí fixační masky nebo dentálních a okcipitálních (týlních) otisků individuálně zhotovených pro každého pacienta. Dosahovaná přesnost zaměření je 1 ÷ 2 mm.

Zařízení LGN je integrovaným systémem sestávajícím z:
- radiační jednotky se 4 kolimačními helmicemi a lůžka,
- Leksellova stereotaktického rámu,
- plánovacího systému s odpovídajícím softwarem. Součástí klinického zařízení bývá i nezbytný 3D zobrazovací systém (CT nebo NMR) on-line propojený s plánovacím systémem.

Zdroje záření jsou rozmístěny v hemisférické centrální jednotce o průměru 400 mm na 5 kružnicích. Každý z 201 zdroje záření je tvořen 12 ± 20 válcovými zrnky 60Co o průměru a délce 1 mm, hermeticky uzavřenými v 2 válcových pouzdrach z nerez oceli. Pouzdra jsou umístěna v hlínikovém kontejneru. Celková aktivita radiační jednotky LGN je v okamžiku instalace 222 TBq. Aplikované dávky jsou v desítkách Gy, doba aplikace desítky až stovky minut.

Zařízení emitované každým zdrojem je kolimováno celkem 3 různými kolimátory. Dva jsou stacionární v radiační jednotce LGN, jeden je výměnné kolimační helmici. Systém je vybaven celkem 4 kolimačními helmicemi s průměry kanálů v ohnisku 4, 8, 14 a 18 mm. Profily dávek jsou vyznačeny na Obrázek 6.7.
Obrázek 6.7: Profily dávek pro koncové kolimátory (v helmici)

Kolimátory umístěné nejblíže ke zdroji a k pacientovi jsou z wolframové slitiny, střední kolimátory jsou olověné. Kolimační helmice je z 99% wolframu o hmotnosti 160 kg. Každý kolimační otvor má kruhový průřez s osou směřující do ohniska v centru radiační jednotky s přesností 0,3 mm. Délka každého kolimačního kanálu je 217,5 mm. Libovolný koncový kolimátor v kolimační helmici může být zaslepen zátkou, která příslušný svazek odstíní - zeslabí se na 0,2% primárního svazku. Schematický řez radiační jednotkou je na Obrázek 6.9, řez kolimačním kanálem je na Obrázek 6.8.

Při přípravě pacienta jsou stínící dveře radiační jednotky LGN uzavřeny a lůžko s kolimační hlavicí je vysunuto. Pacient se stereotaktickým rámem je fixován do kolimační helmice tak, aby cílová oblast (bod) ležela v ohnisku. Při inicializaci výkonu se stínící dveře otevřou a lůžko s kolimační hlavicí a s pacientem jsou zavedeny do terapeutické polohy. Dojde tak k přesnému přesunu zakrytí stacionárních kolimátorů výměnnými kolimátory v kolimační helmici. Poloha je kontrolována mikrospínací s přesností 0,1 mm. Po ukončení dávky vymezené ozařovacím plánem a korekcí na rozpad 60Co zdrojů se lůžko vrátí do východzi polohy a stínící dveře se zavřou.

Obrázek 6.8: Schématický řez kolimačním kanálem

K plněmu pokrytí objemu leze je možné kombinovat všechny velikosti kolimátorů, měnit úhel nastavení hlavy pacienta v horizontální rovině vzhledem ke kolimační helmici, zaslepit některé sektory kolimátorů v helmici. V centru radiační jednotky vzniká přibližně sférická distribuce dávky s průměrem 4, 8, 14 nebo 18 mm na 50% izodóze, [28].
7 Kryochirurgie

Mezi metody umožňující realizovat chirurgický výkon jiným než obvyklým způsobem (skalpelem) patří využití nízkých teplot, vysokofrekvenčních proudů a záření laserů.

7.1 FYZIOLOGICKÉ ÚČINKY NÍZKÝCH TEPLIT

Při rychlém zmrazení zmrzne prakticky současně intra i extracelulární tekutina. V buňkách se vytvoří ledové krystaly a zvýší se koncentrace rozpuštěných látek až k toxickým hodnotám. Dochází ke změně pH, denaturaci fosfolipidů v buněčných membránách, k zastavení pohybu protoplazmy a k dalšímu poškození buněk. Při pomalém oteplování rekrystalizují větší krystaly v buňkách na úkor menších až do velikosti mechanicky narušujících celistvost buněčných membrán. Současně se prodlužuje doba toxického působení koncentrovaných roztoků. Existuje pravděpodobnost přežití $10^{-5} \div 10^{-4}$ procent maligních
buněk a proto se doporučuje mrazící cyklus několikrát opakovat, [16], [40]. Při fyziologickém podechlazování biologických tkání ve tkáňových bankách se aplikuje rychlost mrazení -1 °C/min. (zpravidla na teplotu -150 °C) a rozmrazování rychlostí 50 ÷ 70 °C/min.

Při nízkých teplotách se u biologických tkání projevuje několik efektů. Jsou to:

- **Adhezivní efekt**
 pevné přílnutí povrchu operační koncovky - kryody ke tkání. Tento jev mizí při teplotách pod -80 °C.

- **Hemostatický efekt**
 trombotické uzavření kapilár, rána nekrvácí. Velké cévy (průměr nad 1 mm) jsou však při zákroku intaktní (nedotčené).

- **Analgetický efekt**
 při rychlém podchlazení je výkon bezbolestný. Při ohřevu se dostavuje pocit pálení.

- **Demarkační efekt**
 se projevuje zřetelnou bílou oblastí při podchladění - nárůstem ledového útvaru. Hloubka zmrazení je o 20 % menší než šířka ledového lemu.

- **Rozlomení zmrazené tkáně**
 zabráníme vyloučením i náznamu páčení. Rána by začala krvácet.

Základní biofyzikální poznatky

Podchlazování biologických tkání při kryochirurgickém zákroku je rychlým termodynamickým procesem, jehož teoretický rozbor je však obtížný. Maximální dosažitelná hloubka zmrazení při zákroku je 8 ÷ 10 mm. Zmrazování patologického útvaru probíhá vedením tepla z jeho povrchu do přiložené operační koncovky - kryody kryochirurgického nástroje. I při použití vysoce výkonných nástrojů nemusí být dosaženo maximálně možné hloubky rychlého zmrazení. Důvodem může být zhoršená tepelná vodivost prostoru mezi kryodou a tkání. Vliv této změněné tepelné vodivosti na hloubku zmrazené tkáně je dokumentován, **Obrázek 7.2.**

Obrázek 7.1: Typický průběh teploty při kryodestrukcí
Obrázek 7.2: Průběhy rychlosti zmrazování

Při optimálním tepelném kontaktu je podmínka rychlého zmrazení rychlosti nad 200 °C/min. splněna do hloubky 4 mm. Při zhoršeném tepelném kontaktu (např. nedotaženou kryodou) je podmínka rychlého zmrazení splněna jen těsně pod povrchem tkáně. Při odlomení kryody od tkáně během zmrazování (nepatrným bočním pohybem nástroje) chladicí rychlost prudce poklesne a další zmrazování je zcela neúčinné. Kontrola tepelného kontaktu i během zákroku je proto nutnou podmínkou úspěšnosti chirurgického výkonu.

Rychlost ochlazování nástroje je závislá jak na velikosti odváděného tepla, tak na tepelných vlastnostech nástroje. Základními veličinami ovlivňujícími tento proces jsou:
- teplota výměníku tepla,
- účinnost výměníku tepla,
- teplota par N₂,
- množství chladiva,
- měrné teplo materiálu kryody.

Typický průběh velikosti hloubky zmrazené tkáně v závislosti na aplikované teplotě a zvolené době je uveden na Obrázek 7.3. Teplotní gradient \(\Delta T/\Delta h \) s časem klesá.

Obrázek 7.3: Hloubka zmrazené tkáně v závislosti na teplotě a času
7.2 TECHNICKÉ ŘEŠENÍ KRYOKAUTERU

Zmrazení patologické tkáně je v zásadě možné
- přímým stykem chladiva ve formě plynu nebo kapaliny s tkání,
- nepřímým, zprostředkováným dotykom chlazené kovové operační koncovky - kryody kryochirurgického nástroje s tkání.

V klinické praxi je v současné době využíván nepřímý způsob umožňující přesné vymezení místa i rozsahu zákroku včetně kontroly jeho průběhu. Tento způsob je možné principiálně realizovat:
 - expanzi stlačeného plynu,
 - průtokem chladicí kapaliny.

Chlazení přítočem chladicí kapaliny

Využívá se uzavřený okruh cirkulace chladicí kapaliny, kterou je kapalný dusík (LN₂). Tak může být ochlazen operační koncovka - kryoda až na -196°C. Nekrotizace tkáně nastává až do hloubky 10 mm. Konstrukční provedení může být s:
- autonomním malým zásobníkem nebo
- dislokovaným velkým zásobníkem.

Autonomní systémy

Zásobník LN₂ s přetlakem 10 ÷ 60 kPa je součástí kryochirurgického přístroje. Systém je tlakově bezpečný, pohyblivost nástroje je omezena jen kabelem pro připojení k elektronické řidiči a indikační jednotce. Nevýhodou je větší hmotnost přístroje a menší zásoba LN₂, obvykle 0,1 ÷ 0,3 l, což počítá jen na jeden výkon. Za nevýhodu lze rovněž považovat jen omezené (přípustné) polohy operačního nástroje. Výhodou je rychlejší nástup mrazení.

Systémy s dislokovaným zásobníkem

Zásobník LN₂ s přetlakem až 0,8 MPa může mít objem 5 ÷ 30 l. S operačním nástrojem je spojen 1,5 ÷ 2 m dlouhým ohebným potrubím s dokonalou tepelnou izolací - vakuový vlnovec. Výhodou těchto systémů je malá hmotnost operačního nástroje a zásoba LN₂ postačící na celý operační den. Nevýhodou však je snížená pohyblivost operačního nástroje podmíněná vlnovcem, pomalý nástup chlazení a vysoká hodnota pracovního přetlaku (bezpečnost provozu).

Při každém kryochirurgickém výkonu musí být zajištěno že:
 - všechny části operačního nástroje, kromě kryody, jsou na teplotě těla (izolace vakuum),
 - kryoda je celou svou plochou v kontaktu s biologickou tkání,
 - proces mrazení i oheřevu je plně řízen a indikován.

Tvary kryod se volí s ohledem na strukturu a velikost tumoru. Při endoskopických výkonech bývají průměry kryod 2 ÷ 8 mm, u povrchových lézí pak 14 ÷ 30 mm. Tvary kryochirurgických nástrojů respektuji klinickou aplikaci.
Konstrukční provedení kryokauteru

Schématický náčrt autonomního kryochirurgického systému je na Obrázek 7.4. Vlastní nástroj je tvořen tepelně izolovaným vedením pro páry N₂ (vakuově těsně), dvěma tepelnými výměníky, kryodou a zásobníkem.

Základními součástmi jsou tepelné výměníky TV1 a TV2 tvořené válcovými měděnými síťkami orientovanými kolmo ke směru proudění chladiva. Teplota výměníků se měří odporovými teploměry T1 a T2. K ohřevu slouží topná vinutí výměníků. Operační koncovky - kryody jsou výměnné, umístěné na čele vakuového pouzdra. Zásobník s vakuovou izolací je opatřen pojistným přetlakovým ventilem PV.

Otevřením elektromagnetického ventilu V se uvolní cesta chladicí kapalin, která je tlakem par nad hladinou vytačovává přepouštěcí trubičku T k tepelnému výměníkům TV1. Prostorem mezi trubičkou a výstupní trubkou jsou páry dusíku odváděny do atmosféry. Vedeny jsou přes druhý tepelný výměník TV2 a jejich teplota se řídí tak, aby z přístroje vystupoval plynný dusík jen o pokojové teplotě, měřeno teploměrem T2.

Ventil V zůstává otevřen tak dlouho, dokud teplota výměníku TV1, měřená teploměrem T1, neklade na předem nastavenou teplotu pomocí regulátoru v řídící a indikační jednotce. Po dosažení nastavené teploty je ventil V vypnut a mrazení se zastaví. Teplota tkání se při výkonu měří vpichovým externím teploměrem VT. Přístroj lze naklánět o ± 60° a kdykoliv méní jeho funkci v předvolených tepelných režimech kryody.

Obrázek 7.4: Autonomní kryochirurgický systém
Principiální blokové schéma řídící a indikační jednotky kryokauteru je na Obrázek 7.5. Umožňuje nastavení i indikaci předvolených teplot nástroje - kryody, měření a indikaci teplot nástroje i uvolňovaného plynu, měření a indikaci hladiny LN₂, řízení ohřevu kryody, plynu i zásobníku, měření pracovního přetlaku a měření doby operačního výkonu, [40].

Obrázek 7.5: Blokové schéma elektronické jednotky kryokauteru

Bezpečnost práce s LN₂

Je známo, že 1 litr LN₂ při přeměně na plyn 1 000 krát zvětší svůj objem. Při skladování LN₂ je třeba respektovat požadavek na objem místnosti. Neškodná koncentrace N₂ v ovzduší se zabezpečí pro zásobník 5 litrů LN₂ za 12 hodin v prostoru 100 m³.

8 Aplikace laserů

Základními vlastnostmi laserového záření jsou:
- monochromatičnost (stejná vlnová délka),
- koherentnost (stejná fáze),
- směrovost (kolimovaný svazek).
Proto je možné optickými prostředky soustředit laserový svazek na malou plochu a tím dosáhnout velkých hustot výkonu.
Přenos laserových svazků se realizuje pomocí:
- zrcadel,
- čoček,
- optických vláken.

Z klinického hlediska můžeme provést základní rozdělení aplikací laserů do oblastí:
- chirurgie,
 kdy se jedná o bezkontaktní, nekrvavý zákrok. Aplikace vyšších výkonů 0,1 ÷ 100 W v oborech oftalmologie, ORL, urologie, ortopedie, gynekologie, obecná chirurgie,
- terapie,
 kdy se jedná o fotodynamickou terapii (PDT). Aplikují se střední výkony cca do 1 W v oborech dermatologie, oftalmologie,
- biostimulace,
 při aplikaci nižších výkonů 2 ÷ 50 mW v oborech dermatologie, stomatologie, rehabilitace a v akupunktuře.

Rozdělení laserů

Existuje celá řada třídících hledisek. Uvedeme dělení podle aktivního prostředí, podle interakcí se tkáněmi a podle typu buzení.

Rozdělení laserů dle aktivního prostředí - Toto rozdělení je uvedeno v [Tabulka 8.1].

Tabulka 8.1: Typy laserů

<table>
<thead>
<tr>
<th>Typ</th>
<th>aktivní prostředí</th>
<th>λ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pevnolátkové</td>
<td>rubínový</td>
<td>694,3</td>
</tr>
<tr>
<td></td>
<td>Nd: YAG</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>Ho: YAG</td>
<td>1.064</td>
</tr>
<tr>
<td></td>
<td>Er: YAG</td>
<td>2.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.940</td>
</tr>
<tr>
<td>Plynové</td>
<td>iontové</td>
<td>488</td>
</tr>
<tr>
<td></td>
<td>Ar⁺</td>
<td>514,5</td>
</tr>
<tr>
<td></td>
<td>Kr⁺</td>
<td>647,1</td>
</tr>
<tr>
<td></td>
<td>plynové molekulární</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>He-Ne</td>
<td>1.150</td>
</tr>
<tr>
<td></td>
<td>excimerové</td>
<td>10.600</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>ArF</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>KrF</td>
<td>354</td>
</tr>
<tr>
<td>Kapalinové</td>
<td>barvivové (dye)</td>
<td>470÷538</td>
</tr>
<tr>
<td></td>
<td>kumariny</td>
<td>570÷630</td>
</tr>
<tr>
<td></td>
<td>rhodaminy</td>
<td></td>
</tr>
<tr>
<td>Povodičové</td>
<td>dioda</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>GaAlAs</td>
<td>3.100</td>
</tr>
<tr>
<td></td>
<td>InAs</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>CdTe</td>
<td></td>
</tr>
</tbody>
</table>
Rozdělení laserů dle interakce s tkání

A. Fotokoagulační
 Ar⁺ Rhodamin 6G Ho:YAG
 Kr⁺ GaAs Nd:YAG

B. Fotodisrupční (roztržení)
 excimerové XeF, KrF, ArF a Nd:YAG

C. Fotovaporizační (vypařování)
 CO₂, Ho:YAG

D. Fotodynamicky terapeutické (PDT)
 Kr⁺ barvivové: kumarin, rhodamin

Podle typu buzení dělíme lasery na čerpané:
- opticky výbojkou, laserem, slunečním zářením,
- elektricky elektrickým výbojem, svazkem nabitých částic, elektromagnetickou indukcí,
- chemicky fotochemickou disociací, výměnou energie mezi atomy a molekulami,
- termodynamicky ohřevem, ochlazením plynu.

8.1 INTERAKCE LASEROVÉHO SVAZKU S TKÁNÍ

Optické vlastnosti tkání jsou velice různorodé a závisí na poměru dopadu a odrazu svazků, rozptylu i absorpcí laserového záření. Bylo zjištěno, že koeficient odrazu pro pokožku u Ar⁺ laseru je cca 30%, u He-Ne laseru cca 50 % a u rubínového laseru 66 %.

Biologické účinky laserového záření jsou závislé na:
- vlastnostech zdroje záření,
- velikosti a době expozice,
- optických vlastnostech tkání.

V rozsahu vlnových délek 350÷1.060 nm klesá intenzita laserového záření na 1 % původní hodnoty po průchodu vrstvou tkáně 3÷4 mm silnou. Na vlnové délce 10,6 µm je tato vrstva jen 0,2 mm silná. Laserové záření delších vlnových délek (viditelné světlo, IR) se při interakcích s tkání projevuje hlavně tepelnými účinky. Záření kratších vlnových délek potom více fotochemickými reakcemi. Kromě těchto uvedených účinků se uplatňují při interakcích i účinky mechanické a ionizační.

Svazek laserového záření o intenzitě $10^6÷10^8$ W/m² má velmi silné biologické účinky projevující se disrupčními a vaporizačními efekty. Fototerapeutické efekty se uplatňují při hustotách energií od 10 do 10^6 J/m².

Na Obrázek 8.1 je vyznačeno optické okno kůže. Z průběhu vyplývá, že v rozsahu vlnových délek 600÷1300 nm je absorpce laserového záření v epidermis nejnižší. Tento poznatek přispívá k optimální volbě typu laseru při nejrůznějších terapeutických výkonech.
Terapeutická a protetická technika

Nejčastější aplikací laserového svazku je chirurgický řez - úkon je označován jako výkon optickým skalpelem. Je charakteristický bezkontaktností řezu. Účinkem vysoké hustoty energie se tkání v místě řezu odpařuje, přerušené cévy koagulují a řez tím nekrvácí. Rychlost řezu závisí na:
- intenzitě laserového svazku,
- typu tkáně a její měrné hustotě,
- tepelné kapacitě tkáně.

Výhody optického skalpelu:
- bezdotykový, ostře ohraničený řez,
- mikrotrombolizační efekt řezu u cév do průměru 1 mm,
- regulace hloubky vniku laserového svazku do tkáně velikostí intenzity záření a dobou expozice,
- zrychlené hojení operačních ran.

8.2 VLASTNOSTI VYBRANÝCH TYPŮ LASERŮ

Nd: YAG laser

Nosným prostředím laseru je opticky izotropní monokrystal yttrium alumíniového granátu \((Y_3Al_5O_{12}) \) dopovaný asi 1,5 % iontů neodynu \(\text{Nd}^{3+} \). Nejintenzivnější emisní přechod vyzařuje na \(\lambda = 1,064 \ \mu\text{m} \) - v blízké IR oblasti. Tepelná vodivost granátu umožňuje účinné chlazení aktivního prostředí kapalinou (voda) protékající systémem.

Laser dosahuje v kontinuálním režimu při čerpání kryptonovou výbojkou vysokých výstupních výkonů 100 ÷ 200 W (1 kW). V impulzním režimu může být opakovací frekvence až 100 Hz. Typickou aplikací je optický skalpel [7], [33]. Nevýhodou však je rozsáhlé tepelné poškození okolních tkání, výhodou je možnost vedení svazku optickým vlákem.
He-Ne laser

Plynový, zřejmě nejčastěji užívaný laser. Dosud je známo velké množství přechodů na vlnových délkách 0,63 +12 µm. Největší počet konstrukcí však využívá přechod na λ = 633 nm. Atomy Ne jsou nositeli zesílení. Výstupní výkon může být 10 µW až 100 mW, [7].

Ar⁺ laser

Iontový laser představující nejvýkonnější záření ve viditelné části spektra (350 +750 nm). Výboj v trubici tohoto laseru není doutnavý, jako u He-Ne laseru, ale hustotou počtu elektronů je fazen mezi doutnavé a obloukové výboje - proud 10 +100 A. Kapilára při buzení Ar⁺ je často umístována do magnetického pole solenoidu udržujícího elektrony i ionty u osy kapiláry.

Výbojová trubice musí odolat velkému tepelnému namáhání - energie zdroje se musí rozptylit ve výboji. Pro konstrukci se užívá beryliová keramika. Prach je však toxický. Existují desítky přechodů ve vlnových délkách 0,63 +12 µm, [7]. Výhodou je možnost vedení svazku optickým vlákem, nevýhodou je velké tepelné poškození okolních tkání.

Barvírový laser

Náleží do skupiny kapalinových laserů s organickým barvivem, proto označení barvírový laser. Existuje několik set organických barviv s absorbčními pásky ve viditelné a ultrafialové části spektra. Konstrukčně jsou nejvíce využívány kumariny a rhodaminy. Typická šíře emisní čáry organického barviva je cca 35 nm což umožňuje realizovat laditelný laser při možnosti generování emisní čáry 0,001 nm.

Tato výhoda však přináší i řadu nevýhod: požadavek intenzivního budicího zdroje vyzařujícího v UV nebo modrofialové části spektra (impulsní výbojky nebo lasery), pouze impulsní provoz a nestabilita barviv. Nejznámější rhodamin R6G emituje záření na λ=590 nm. Výstupní výkon může dosahovat až 10 W, [7], [33].

Excimerový laser

Excitovaný dimer tedy excimer je dvouatomovou molekulou existující jen v excitovaném stavu. Nejznámější excimerové lasery využívají směs vzácných plynů a halogenů. V současné době jsou to nejvýkonnější zdroje UV záření. Jsou rovněž přeladitelné v pásmu po cca 0,5 nm. Emitují na vlnových délkách: ArF 193 nm, KrF 248 nm a XeF 354 nm. Dosahované výkony jsou řádově v MW při nanosekundových impulsech, [7], [33].

CO₂ laser

Molekulární plynový laser, dosud nejvýkonnější s velkou účinností (až 4 %). Molekula CO₂ emituje záření v rozsahu vlnových délek 4 +18 µm, nejintenzivnější pak na 9,5 a 10,6 µm. Nejvyšší výkony jsou generovány TEA CO₂ lasery na principu příčného buzení při atmosférickém tlaku (Transversal Excitation at Atmospheric Pressure). Tyto konstrukce dosahují výkonu až 20 MW v impulsech šíře 100 ns, [7], [33].
Výhodou je vysoká absorpce energie vodou, hemostatické účinky svazku a malé tepelné poškození okolních tkání. Nevýhodou však jsou problémy s vysokým napětím a nemožnost vedení svazku optickým vláksem. Proto se pro převod svazku do operačního pole užívá tzv. artikulační rameno, soustava zrcadel minimálně v šesti kloubcích. Nevýhodou je také nutnost navádění svazku jiným laserovým svazkem, nejčastěji He-Ne laserem.

8.3 TECHNICKÉ ŘEŠENÍ LASERU

Laser jako generátor stimulované emise záření se konstrukčně skládá z:
- aktivní látky,
- optického rezonátoru,
- excitačního zařízení.

Odrázivost zrcadel musí být s ohledem na zesílení aktivního prostředí mezi nimi volena tak, aby celkové ztráty nepřevyšily zesílení aktivního prostředí. Na ztrátech v rezonátoru se podílí odrázivost zrcadel, jejich kvalita a rozptyl na nehomogenitách optického prostředí. Přesnost opravování zrcadel musí být 1/20 ÷ 1/40 \(\lambda \). Rezonátor je plně určen tvarem apertury obrysové křivky zrcadel, tvarem jejich plochy a jejich vzájemnou vzdáleností, [7].

U rezonátorů je dále hodnocena jakost, stabilita, určován mod - základní je mod TEM\(_{00}\). Excitačním zařízením může být výbojka, zdroj vysokého napětí pro doutnavý nebo obloukový výboj, zdroj elektronového svazku (katoda).

Principiální blokové schéma obecné sestavy laseru je uvedeno na Obrázek 8.2. Přechod svazku přes rozhraní dvou prostředí s rozdílnými indexy lomu musí respektovat Brewsterův úhel – úhel mezi normálou k rozhraním a směrem vlnového vektoru záření. Podobná situace je s akceptačním úhlem u optických vláken. Nejvýznamnějšími provozními parametry laserů jsou:
- velikost generované vlnové délky,
- výstupní výkon (energie svazku) CW a v impulsu,
- pracovní režim CW, pulsní,
- účinnost.

Vedení laserového svazku je v zásadě možné:
- flexibilním optickým vláknom (SiO\(_2\)) nebo světlovodem ve vlnových délkách mezi 400 nm až 2,1 \(\mu \)m,
- artikulačním ramenem se zrcadly pro vlnové délky větší než 2,1 \(\mu \)m (CO\(_2\) a Er: YAG lasery).
Obrázek 8.2: Principiální sestava laseru

Délka optických vláken bývá obvykle 1 ÷ 3 m. Omezení pro vedení svazků ve vlnových délkách větších než 2,9 µm je dáno absorpcí na nečistotách a vlastní krystalické mřížce (>5 µm). V posledních letech se pro vedení svazku CO₂ laseru objevil flexibilní dutý teflonový vlnovod o průměru 1,6 mm pokrytý tenkým kovovým filmem s dielektrickou vrstvou, [2].

Bezpečnost práce s laserem

Z publikovaných prací vyplývá, že ionizaci ve tkáních nevyvolá záření s vlnovou délkou delší než 100 nm. Efekty k nimž ovšem dochází jsou tepelné, tlakové, elektrické a biochemické. Nejcitlivějším a tím i nejzranitelnějším orgánem při práci s laserem je oko. Hovoříme proto o kritickém orgánu.

Následky ozáření jsou závislé na vlnové délce, době expozice, v impulzním režimu na šířce a frekvenci pulsů. Bylo prokázáno, že rohovka intenzivně absorbuje UV a vzdálené IR záření, sítnice pak viditelné a blízké IR záření, sklivce je v těchto vlnových délkách téměř transparentní. Nebezpečí poškození zraku se zvyšuje také tím, že v této spektrální oblasti nezpůsobí obranný reflex oka.

Nebezpečné jsou zvláště krátké impulsy vysokých energií, τ < 10⁻⁹ s. Sklivcem se tak šíří tlaková vlna, která může způsobit destrukci očního obalu. Poškozením sítnice dochází ke ztrátě citlivosti tyčinek a čípek v postiženém místě a ke vzniku temně skvrny, kterou nelze operativně odstranit. Hloubka vniku viditelného záření do kůže je asi 10 µm, nejhlučněji proniká záření blízké IR oblasti cca do 1 ÷ 3 mm.

Téměř ve všech laserech je zabudován zdroj vn (1 ÷ 100 kV), který při nesprávné manipulaci představuje také nebezpečí. Provozem výkonných výbojek se uvolňuje ozón, jehož vyšší koncentrace mohou být toxické. Zcela nezanedbatelně jsou také účinky na psychiku a únavu zraku.

Podle nebezpečí, které pro lidské zdraví představují lasery různých vlnových délek a výkonů byly stanoveny hygienickým přepisem MZd ČR, sv. 53/1982 tyto třídy:

- **1. třída** lasery generující svazek o výkonu menším než 0,4 µW nebo lasery zakrytované,
- **2. třída** lasery v CW režimu ve viditelné části spektra s výkonem menším než 1 mW, ale větším než 0,4 µW,
- **3. třída** lasery generující v CW režimu ve viditelné části spektra svazek s výkonem menším než 5 mW nebo v impulsu výkon do 0,5 W,
- **4. třída** lasery s výkonem přesahujícím 3. třídu.

V okolí výstupu svazku musí mít každý laser štítek s vyznačenou třídou a upozorněním na nebezpečí poškození zdraví (trojúhelník s jiskrou a nápisem „laserové záření“). Podmínky pro práci s lasery vymezuje vyhláška č.125 Českého úřadu práce z r. 1982.

9 Ventilační a anesteziologické systémy

Ventilační systémy jsou určeny k zachování základních životních funkcí organismu. Umělá plicní ventilace slouží k udržení krevních plynů v odpovídajícím množství a složení. Při aplikaci anestetických plynů umožní podání inhalační anestezie.

Při dlouhodobé aplikaci plní ventilátory nejen resuscitační požadavky podpory nebo náhrady ventilace pacienta, ale často i nároky respirační terapie (distentní terapie plic, mozkový edém ap.). Nefyzioologický způsob ventilace plic, zvláště jeho mechanický účinek, se však projeví na plicním parenchymu, funkci srdce a na hemodyynamice organizmu. Změny se projeví i ve vodní a elektrolytové rovnováze organismu.

Na obrázek 9.1 jsou uvedeny ideální křivky průběhu tlaku a proudu (průtoku vzduchu nebo směsi plynů) v plicích při řízené objemové ventilaci. Na křivce tlaku je vyznačena hodnota PEEP (Positive End Expiratory Pressure) kontinuálního přetlaku v dýchacích cestách 0,5 až 1,5 kPa. Tlaky v dýchacích cestách jsou vztaženy k atmosférickému tlaku jako „nule“.

Obrázek 9.1: Ventilační křivky
Při nádechu začíná proudit do plic pacienta konstantní rychlostí směs plynů a tlak v plicích lineárně roste až do maximálního inspiračního tlaku. Tím je uzavřen jednorázový inspirační dechový objem. Následuje inspirační prodleva (obvykle 5% ventilačního cyklu), kdy je ukončeno proudění směsi plynů do pacienta a ventilační systém udržuje tlak inspirační prodlevy. Rozdíl mezi maximálním inspiračním tlakem a tlakem inspirační prodlevy je podmíněn odporem dýchacích cest pacienta. Při výdechu tlak i proud plynu exponenciálně klesají. Tím je rovněž vymezen jednorázový expirační dechový objem, [8].

Tabulka 9.1: Barevné značení tlakových láhví

<table>
<thead>
<tr>
<th>Plyn</th>
<th>Značení celé láhve</th>
<th>barevný pruh</th>
</tr>
</thead>
<tbody>
<tr>
<td>kyslík</td>
<td>modř návěstní</td>
<td>bílá</td>
</tr>
<tr>
<td>oxid dusný</td>
<td>šedá</td>
<td>modř návěstní</td>
</tr>
<tr>
<td>dusík</td>
<td>zelená</td>
<td>černá</td>
</tr>
<tr>
<td>oxid uhličitý</td>
<td>černá</td>
<td>šedá</td>
</tr>
<tr>
<td>cyklopropan</td>
<td>oranž návěstní</td>
<td>fialová</td>
</tr>
<tr>
<td>etilén</td>
<td></td>
<td></td>
</tr>
<tr>
<td>helium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyslík + oxid uhličitý</td>
<td>modř návěstní</td>
<td>bílá + šedá</td>
</tr>
<tr>
<td>kyslík + helium + vzduch</td>
<td></td>
<td>bílá + hněď čokoládová</td>
</tr>
</tbody>
</table>

9.1 UMĚLÁ Plicní ventilace

Ventilátor

Hlavními funkčními částmi každého ventilátoru jsou zásobníky plynů (vzduch, O₂) s jednotkou mísení a dávkování, pacientská část s hadicemi i ventily a řídící jednotka zabezpečující odpovídající ventilační režimy. Přidavnými funkčními bloky jsou pohlcovač CO₂ a zvlhčovač. Zcela nezbytný je monitorovací systém, který v současné době umožňuje stanovit nejen základní funkční parametry plnicí ventilace, ale i analýzu vydechovaných plynů pacienta jako formu funkčního vyšetření jeho plic. Principiální blokové schéma ventilátoru je uvedeno na Obrázek 9.2, [2].

Jedná se o mikroprocesorem řízený ventilátor umožňující dodávku plynů jak při spontánním dýchání, tak při umělé ventilaci plic - zástupové ventilaci. Systém je také označován jako servventilátor, protože využívá snímačů tlaku a průtoku plynů v dýchacím okruhu pacienta k zavedení „zpětné vazby“ při řízení.

Při umělé ventilaci musí lékař – anesteziolog nastavit následující parametry systému:
- respirační rychlost (poměr),
- ventilační režim (průběh tlaku),
- respirační objem,
- koncentraci O₂,
- špičkový průtok,
- hodnotu PEEP.

Tyto parametry (kromě PEEP) jsou využívány k výpočtu průběhu celkového požadovaného respiračního průtoku směsi plynů.

![Blokové schéma ventilátoru](image_url)
Obrázek 9.2: Blokové schéma ventilátoru
V zásadě je možné, aby ventilační systém vůči pacientovi pracoval jako zdroj konstantního nízkého nebo vysokého tlaku - měkký nebo tvrdý zdroj. To závisí na velikosti a průběhu tlaku v dýchacích cestách pacienta. U nízkého tlaku zdroje närůstá tlak v dýchacích cestách postupně, kdežto u tlaku vysokého (10 × vyššího než tlak při nádechu) rovnoměrně. Elastické vlastnosti dýchacího ústrojí pacienta (poddajnost a odpor dýchacích cest) v prvním případě ovlivní, ve druhém neovlivní nastavené ventilační parametry systému, [8].

Aplikace ventilačního systému na dýchací ústrojí pacienta je možná obličejovou maskou, tracheální rourkou nebo tracheostomickou kanylovou. Napojení se realizuje dýchací vrapovanou hadicí se silnou stěnou nebo vyztužením kovovou spirálou. Vnitřní průměr hadic jsou 10 nebo 20 mm. Součástí systému jsou vdechové, výdechové a pojistné přetlakové ventily. Dýchací vak slouží k ruční ventilaci, ale také jako reservoár plynné směsi.

Ventilační režimy

Ventilační režimy, jako forma náhrady plicní ventilace, vymezují jak složení plynné směsi dýchanych plynů, tak profily tlaku i průtoku těchto plynů. Podle stupně náhrady funkce dýchacích svalů a rozsahu řízení ventilace dělíme ventilační režimy na, [8]:

- **režimy spontánní ventilace**, kdy si pacient kromě složení směsi plynů řídí ventilační parametry sám,
- **podpůrné ventilační režimy**, kdy část mechanické práce dýchacích svalů je sdílena ventilátorem,
- **režimy řízené ventilace**, kdy veškerou ventilaci vykonává za pacienta ventilátor.

Vysokofrekvenční ventilace

Ventilační režimy provozované na suprafyziologických frekvencích, tj. nad 60 cyklů za minutu, jsou označovány jako vysokofrekvenční ventilace. Ventilační režimy tohoto typu jsou charakterizovány dodáváním velice malých dechových objemů.

9.2 INHALAČNÍ ANESTEZIE

Ventilační systémy určené pro podávání inhalační anestezie jsou označovány jako narkotizační. Oproti standardnímu ventilátoru jsou doplněny směšovačem kyslíku a oxidu dusného, odpafovačem kapalných anestetik a pohlcovačem CO₂.

Odpáfovač slouží k podávání páry anestetických kapalin. Konstrukčním problémem je udržení stálé koncentrace odpáfovaného anestetika s ohledem na ochlazování kapaliny při odpáfovaní a také na změny průtoku plynů.
Známé jsou opařovací techniky:

- termostabilní, řízené termočlánkem,
- termokompensované, řízené bimetalem,
- vstřikovací, řízené elektronicky.

Obkročný ventil umožňuje „propláchnout“ systém od anestetických plynů silným průtokem čistého kyslíku. Pohlcovací slouží k odstranění CO₂ z plynné směsi ve výdechové trase. Sorbentem je granulovaná vápená směs s dobou účinnosti na 0,5 ± 4 hodiny, podle velikosti provedení. U současných moderních systémů je pacientský dýchací okruh řešen oddělenými hadicemi pro směs vdechovaných a výdechovaných plynů.

Rozdělení systémů pro inhalační anestezii podle IEC:

- systémy bez zpětného vdechování,
- systémy s částečným zpětným vdechováním,
- systémy s úplným zpětným vdechováním.

Míra zpětného vdechování se promítá i do označení systému jako: otevřené, polotovřené či polouzavřené a uzavřené. Otevřeným systémem (okruhem) je pacientovi přiváděna stále čerstvá směs plynů, bez zpětného vdechování. U uzavřeného systému (okruhu) je zpětné vdechování úplné a proto se pacientovi přivádí jen takové množství směsi plynů, aby byla saturowána jeho spotřeba kyslíku a anestetických plynů či par. Výhodou uzavřeného systému je hospodárné využívání plynů beze ztrát tepla a vody, bez exhalací vdechovaných anestetických plynů do ovzduší na operačním sále. Nevýhodou může být přehřátí pacienta. Principiální blokové schéma systému pro inhalační anestezii je na Obrázek 9.3.

Obrázek 9.3: Blokové schéma systému inhalační anestezie
10 Podpora funkce srdce, mimotělní oběh

Selhávání mechanické funkce levé komory srdeční je vrcholným projevem ischemické choroby. Může být přechodného charakteru, ale také jako projev čerstvého infarktu myokardu. Průvodným jevem je kardiogenní šok: pokles srdečního výdeje spojený se sníženou perfuzí životně důležitých tkání. Restituice funkce reversibilně poškozeného srdečního svalu je možná:

- podpůrnými mechanismy,
- kardiochirurgickými výkony.

Chirurgické výkony na otevřeném srdeci nejsou myslitelné bez mimotělního oběhu nahrazujícího funkci srdce a plic. Popis a aplikační možnosti jsou popsány v této kapitole.

10.1 PODPORA FUNKCE SRDCE

Aplikace zařízení pro podporu selhávajícího oběhu krve je závislá na charakteru srdeční nedostatečnosti. U reversibilních selhávání se jedná o přístroje umožňující dočasně převzít funkci srdece jako pumpy nebo snížit nároky na tlak a objem při dodržení podmínek periferní cirkulace. U stabilních stavů je řešením pouze implantát nebo transplantace srdece.

Práci, kterou srdce vykonává je možné hodnotit součinem tlaku, objemu a momentu zrychlení krevního toku. Okamžik mechanické podpory musí nastat při poklesu systolického aortálního tlaku nebo snížení doby pohybu objemu krve.

Intraaortální balónková kontrapulsace

Průtok koronárního řečištěm je závislý na velikosti diastolického tlaku krve v aortě. Proto jsou některé podpůrné systémy navrženy tak, aby přebíraly nejen funkci práce s objemem čerpané krve, ale aby zároveň zvýšily hodnotu diastolického tlaku v aortě.

V době systolického srdečního výdeje balónek splaskává, snižuje tlakové nároky srdece. V diastole se nafukuje, tím zvýší diastolický tlak a současně i koronární průtok. Dynamická velikost balónku se odvozuje z tepového objemu srdce. Za fyziologických podmínek je koronární průtok v diastole pětinásobkem průtoku v systole. Při aplikaci kontrapulsačního balónku se tento poměr ještě zvýší i o okolní sestupkách na stav koronárních tepen a případně kolaterální oběhy.
Obrázek 10.1: Princip intraaortální balónkové kontrapulsace

Podpora bypassem

Funkci selhávajícího srdce přebírá při této podpoře čerpadlo, které je součástí mimotělního oběhu krve (peristaltické, rotační) nebo speciálně konstruované membránové s pneumatickým, hydraulickým nebo elektromagnetickým pohonem. Tato čerpadla mají své vstupní a výstupní chlopně a jsou speciálními kanylami napojeny na cévy srdce.

10.2 **MIMOTĚLNÍ OBĚH KRVE**

Pro veškeré chirurgické výkony na otevřeném srdci je třeba užít zařízení, které nahradí fyziologickou funkci srdece a plic pacienta. Takovým zařízením je systém mimotělního oběhu krve srdece-plíce (extrakorporál). Skládá se zpravidla ze 4 (5) peristaltických rotačních čerpadel, oxygenátoru, směšovače plynů, hladinoměru, detektoru bublin, výměníku a termoregulačního zařízení pro chlazení a ohřev krve pacienta s nezbytnými teploměry. Zařízení musí umožňovat bezporuchový provoz i s náhradním zdrojem elektrické energie.

Funkci operovaného srdce nahrazuje první čerpadlo, které musí zvládat průtok 7 l/min. Další dvě čerpadla odsávají krev ze srdece a poslední pak odsává krev z operačního pole. Oxygenátor se v současné době užívají bublinkové nebo kapilární podle doby potřebné k výkonu: 2 nebo cca 20 hodin. Pro okysličení krve se využívá směs plynů O₂ + CO₂ nebo O₂ + vzduch. Spotřeba bývá 0,25 ÷ 1 litr směsi plynů na 1 litr protékající krve.
Termoregulační zařízení s výměníkem tepla pro ochlazování i oheř krve pacienta využívá dvou reservoárů s vodou na teplotě 4 a 41 °C. Výměník tepla je součástí oxygenátoru.

Schematický náčrt napojení mimotělního oběhu na pacienta je uveden na Obrázek 10.2. Cévní sety se aplikují tzv. kanylami. Venózní část systému je napojena venózními kanylami do horní a dolní duté žily operovaného. Okysličená krev je z oxygenátoru vedena arteriální kanyloou do vzestupné části aorty. Před zavedením kanylu a zahájením mimotělního oběhu je třeba aplikovat heparin v dávce 2 ÷ 3 mg/kg; po ukončení výkonu se účinek heparinu ruší protaminem.

Obrázek 10.2: Mimotělní oběh

Pro snížení spotřeby krve při provozu mimotělního oběhu se využívá hemodiluce, kdy se oxygenátor naplní krystaloidy: Ringerův roztok s glukózou. Sníží se tak viskozita cirkulující krve a tím se sníží rozdíly tlaků v oxygenátoru a kanylách. Tekutina se po výkonu spontánně vyloučí diurézou. Během výkonu je však třeba kontrolovat hematokrit krve a acidobazickou rovnováhu operovaného.

Hypotermie

Po dobu srdeční zástavy musí mimotělní oběh zajistit odpovídající perfúzi všech tkání a orgánů. Při normální teplotě - normotermii se za přiměřenou perfúzi považuje průtoku 2,2 ÷ 2,4 l/min. na 1 m² povrchu těla. Snížováním tělesné teploty operovaného se snížují i metabolické nároky – snížením o 10°C až o 50%. Při teplotě organismu 28°C je bezpečný průtok 1,6 l/min.m², při 20°C pak jen 1 ÷ 1,2 l/min.m². Spotřeba kyslíku ve tkáních klesá ze 120 ml/min.m² při 36°C na 30 ml/min.m², [6].
Pro snížení metabolických nároků organismu se kardiochirurgické výkony realizují při snížené teplotě těla operovaného — v hypotermii. Podle předpokládané doby trvání chirurgického výkonu se teplota operovaného volí v rozmezí 28–30°C. Při hluboké hypotermii se sníží tělesná teplota operovaného až na 15°C. Tento stav dovoluje zastavit mimotělní oběh až 60 minut operovat při úplné zastavění cirkulace. Tato metoda se využívá hlavně v dětské kardiochirurgii při korekčních vrozených srdečních vad u novorozenců a kojenců. U dospělých je tento postup využíván jen při úplném zastavení cirkulace. Tato metoda se využívá hlavně v dětské kardiochirurgii při korekčních vrozených srdečních vad u novorozenců a kojenců. U dospělých je tento postup využíván jen při úplném zastavení cirkulace. Tato metoda se využívá hlavně v dětské kardiochirurgii při korekčních vrozených srdečních vad u novorozenců a kojenců. U dospělých je tento postup využíván jen při úplném zastavení cirkulace. Tato metoda se využívá hlavně v dětské kardiochirurgii při korekčních vrozených srdečních vad u novorozenců a kojenců.

Většina výkonů na otevřeném srdci s mimotělním oběhem vyžaduje i přerušení průtoku koronárním řečištěm. Toho se dosáhne svorkou na vzestupné aortě. Doba uzávěru je v průměru 60 minut, u náročných rekonstrukcí až 120 minut. Po tuto dobu je třeba chránit myokard před ischemií hypotermickou kardioplegií. Koronární řečiště je přepáženo 500–1500 ml, 4°C chladným roztokem kalia a magnezia, který navodí asystolii v diastole a zchladí myokard na 8–10°C. U rozsáhlejších výkonů se tato aplikace po 20–40 minutách opakuje. Hypotermie myokardu je udržována také opakovaným poléváním srdce ledovým fyziologickým roztokem, [6].

EMCO – extracorporeal membrane oxygenation

Mimotělní membránová oxygenace je využitím kardiopulmonálního mimotělního oběhu krve v případech, kdy činnost plíc je natolik poškozena, že i po napojení na řízenou ventilaci nelze dosáhnout pO₂ a pCO₂ na hodnotách nutných pro přežití. Tato přístup je určen k udržování arteériálního stavy u novorozenců a kojenců. Venální odvodná kanyla se zavádí přes jugulární žílou do pravé síně, po okyslení je krev navrácena do arteriálního systému přes karotickou tepnu nebo žílou femorální. Užívají se polypropylenové kapilární oxygenátory s tenkou vrstvou silikonu na kapilárách, [6].

11 Podpora funkce ledvin, hemodialýza

Z fyziologie je známo, že ledviny udržují v organismu stálé osmotické tlak a homeostázi vnitřního prostředí. Filtrují krev ze které odstraňují škodlivé a nesebytné látky včetně vody. Ultrafiltrát krevní plasmasy jako prvotní moč obsahuje kromě krví a plasmatických bílkovin i všechny části krevní plasmody. Průtok je cca 1300 ml/min – jinak také 25% minutového srdečního výdeje. Za den se vytvoří až 150 l ultrafiltrátu, ale po zpětném vstřebání vody, cukru a soli je produkovo jen 1,2÷1,5 l definitivní moč. Množství a složení moči ovlivňuje vznik adiuretins – hormon hypofýzy. Reakce moči: pH 4,5÷8.

Ledviny v organismu plní tyto základní funkce:
- odstraňují zplodiny látkové výměny,
- řídí vodní a elektrolytové hospodářství,
- podílí se na acidobazické rovnováze,
- produkují jisté hormony a enzymy (renin).
Homeostáza vnitřního prostředí organismu je zajišťována tvorbou a vylučováním moče (diurézou). Selhání funkce ledvin – anurie (zástava tvorby a vylučování moče) vede k urémii (vnitřní otrava) a ke smrti. Technická zařízení nahrazující funkci ledvin jsou v podstatě mimotělními oběžy krve umožňujícími její očistu. Tato zařízení jsou obecně označována jako *umělá ledvina* - bez možné produkce enzymů a hormonů.

Látky, které mají být odstraněny z organismu dělíme na *endogenní* a *exogenní*.

Dočasná náhrada funkce ledvin je principiálně možná třemi způsoby:

- hemodialýzou,
- hemofiltrací,
- plasmaferézou.

Žádná z uvedených metod plně nenahradí vlastnosti a funkci ledvin, zvláště pak produkci enzymů a hormonů. Využívají se při náhlejší selháních funkce ledvin, při intoxikaci (otravě) a u chronických pacientů očekávajících transplantaci. U všech uvedených metod se v zásadě využívá kombinace tří základních principů: difúze, osmózy a filtrace, [24].

Difúze

je prostupování látky membránou z místa o vyšší koncentraci do místa o koncentraci nižší až do úplného vyrovnání. Rychlost prostupu látky je přímo závislá na velikosti gradientu koncentrace, na ploše a poréznosti membrány, nezávislá na tloušťce membrány a molekulární hmotnosti difundující látky. Difúze je základním pochodem očisty krve při hemodialýze a peritoneální dialýze.

Osmóza

je pronikání kapaliny membránou oddělující roztoky s různou hustotou až do vyrovnání osmotického tlakového gradientu s hydrostatickým tlakovým gradientem. Při hemodialýze se osmóza uplatňuje několikrát:

- krevní bílkoviny s ohledem na velikost svých molekul nemohou pronikat membránou dialyzátoru. Vyvozuji *onkotický tlak* (osmotický tlak krevních bílkovin) pod kterým by mohla být nasávána voda z dialyzátu do krve.
 Tento tlak je však převážen hydrostatickým tlakem;
- přechodu vody z krve do dialyzátu napomáhá zvýšená koncentrace některých osmoticky aktivních látek v dialyzátu (sodík, glukóza);
- osmolarita extracelulární tekutiny musí být odpovídajícím složením dialyzátu udržována během celé hemodialýzy na stejně úrovni jako osmolarita tekutiny intracelulární. Nesmí docházet k osmotickému přesunu vody do buněk.

Ultrafiltrace

je přestup tekutiny membránou díky rozdílu hydrostatických tlaků omezený pouze velikostí pórů membrány. Při hemodialýze se krevním filtrátem odstraňuje z těla voda, které se organismus nedokázal zbavit diurézou (močením). Tlakový spád na membráně může být navozen jak přetlakem na krevní straně, tak podtlakem na straně dialyzátu.
11.1 HEMODIALÝZA

![Diagram hemodialýzy](image1)

Obrázek 11.1: Rozdělení hemodialýzačních postupů

11.1.1 Hemodialýzační monitor

Principiální blokové schéma mimotělního oběhu krve realizovaného dialyzácím monitorem s dialyzátorem je uvedeno na Obrázek 11.2.

![Diagram hemodialýzy](image2)

Obrázek 11.2: Princip hemodialýzy

Funkční blok označený jako *dialyzační monitor* obsahuje nejen uvedené krevní čerpadlo, ale i dialyzátová čerpadla, blok měšení dialyzátu, řídicí, měřicí a signalizační jednotky s procesory, úpravu a ohřev vody, měření tlaků, vodivosti dialyzátu, detektory
bublin a úniku krve, hladinoměry. Arteriální hadicový set vede krev z pacienta do dialyzátoru, venální hadicový set potom vede krev z dialyzátoru do pacienta.

S ohledem na funkční stav vlastních ledvin jsou pacienti přijímáni do dialýzačního programu dialýzačního centra. Obvykle se dialýza provádí 2 ± 3 krát týdně po 4 ± 8 hod. Pacienti přežívají až 15, vyjímečně i 20 let.

11.1.2 Dialyzátory

Dialyzátor je základní součástí systému mimotělní očisťky krve. Kvalita jeho provedení spojuje technické parametry podmiíněné i kvalitu procesu dialýzy. Vývojově se jedná o typy, [24]:

- **civkový** (fy Travenol)
 byl nejstarším typem dialyzátoru pro jedno použití. Dvě hadice z dialýzační membrány byly s prokladovou mřížkou navinuty na válcovém jádře. Užívaly se u recirkulačních systémů. Dialyzátor proudil kolmo na směr toku krve v hadici. Nevýhodou byl velký průtočný odpor na krevní straně (hadice měla délku 5 m) a malá účinnost;

- **deskový** (fy Gambro)
 využívá membránovou rovněž ve formě široké ploché hadice, ale s krevní stranou krátkou (desítky cm). Velké dialýzační plochy je dosahováno paralelním spojením mnoha úseků membrány proložených rozpěrnou mřížkou. Nevýhodou je závislost účinnosti na tlakových poměrech v dialyzátoru. Regenerace není vždy bezpečná;

- **kapilární** (fy Cordis–Dow)

Membrány dialyzátorů

Výrobně jsou membrány tvořeny tenkými polymerními fóliemi s požadovanou velikostí pórů. Materiály musí být smaživé, aby umožnily difúzi katabolitů.

Prvním užívaným materiálem byl celofán, později cuprophan a nefrophan, které jsou dodnes základem i pro výrobu vláken. V současnosti se vlákna vyrábí z polyamidu, polysulfonu, polymethylmetakrylátu, polyvinylalkoholu, polykarbonátu, [24]. Rozhodující je biokompatibilita užitých materiálů.

Zvláštní třída dialýzačních membrán představují high–flux membrány, které vykazují vysokou propustnost i pro látky s větší molekulovou hmotností (několik tisíc). Materiálem je polysulfon.
[+++] Účinnost dialyzátoru

Účinnost dialyzátoru je definována jako schopnost frakčního oddělení roztoků z krve. Je označována jako clearence (vyčištění) a dialyzovaná krev se k její hodnotě asymptoticky blíží. K vyjádření clearence využijeme Obrázek 11.3, kde průtoky krve a dialyzátu jsou značeny \(Q_B, Q_D \) a koncentrace látek v krvi a dialyzátu \(C_B, C_D \).

Obrázek 11.3: K popisu clearence

Míru přenosu celkové rozpuštěné látky mezi krví a dialyzátem lze vyjádřit:

\[
N = Q_B \cdot (C_{Bi} - C_{Bo}) = Q_D \cdot (C_{Do} - C_{Di})
\] \hspace{1cm} (11.1)

Indexy \(i, o \) značí přítok a odtok kapaliny odpovídající koncentrace. Clearence je definována jako poměr míry přenosu ku gradientu koncentrace převládající v přítoku do systému – dialyzátoru. Lze tedy psát, [2]:

\[
K = \frac{N}{C_{Bi} - C_{Di}}.
\] \hspace{1cm} (11.2)

Vyjádříme-li výsledné koncentrace rozpuštěných látek v krvi a dialyzátu, obdržíme:

\[
K_B = Q_B \cdot \frac{C_{Bi} - C_{Bo}}{C_{Bi} - C_{Di}} \approx K_D = Q_D \cdot \frac{C_{Do} - C_{Di}}{C_{Bi} - C_{Di}}.
\] \hspace{1cm} (11.3)

Z uvedených výrazů je patrné, že clearence je závislá na velikosti průtoků jak krve, tak dialyzátu. Proto jsou od výrobčů dialyzátorů nabízeny clearencové charakteristiky – závislosti clearence na průtoku krve. Příklad uvedený na Obrázek 11.4 je charakteristikou dialyzátoru vhodného i pro režim high–flux. Molekulové hmotnosti jsou od 60 u močoviny, 113 u kreatininu až po 1355 u B12.

Na Obrázek 11.5 jsou srovnány závislosti clearence na molekulové hmotnosti odstraňovaných látek při hemodialýze, hemofiltraci a u zdravé ledviny.
Obrázek 11.4: Clearenceová charakteristika dialyzátoru

Clearence charakterizuje pouze transportní vztahy v dializátoru a nelze ji proto zaměňovat s účinností celé dialýzy. Ta je závislá i na případné recirkulaci ve fistuli (arterio–venózní shunt), zvláště pak při jedno jechlovém režimu, [24].

Obrázek 11.5: Srovnání účinnosti očisty krve

Ultrafiltrační schopnost

Filiační propustností dialyzátoru, jinak také jeho ultrafiltrační schopností, rozumíme závislost rychlosti tvorby filtrátu na tlakovém gradientu na jeho membráně. Tlakové poměry na membráně se hodnotí transmembránovým tlakem TMP jako střední hodnotou rozdílu tlaků na membráně:

$$\text{TMP} = \frac{P_{Bi} + P_{Bo}}{2} - \frac{P_{Di} + P_{Do}}{2},$$

(11.4)

kde podobně jako v předchozích vztazích indexy B a D přísluší krvi a dialyzátu.

Přechod filtrátu membránou se řídí přetlakem na krevní straně nebo podtlakem na straně dialyzátu. Tlak krevní strany bývá o 100 ÷ 500 mmHg vyšší než tlak strany dialyzátové. Průtoky krve se volí 200 ÷ 300 ml/min, dialyzátu 500 ml/min. Rychlost tvorby filtrátu v
závislosti na transmembránovém tlaku udává ultrafiltrační charakteristika. Výrobce dialyzátoru je stanovena pro vodný roztok v podmínkách in vitro, Obrázek 11.6.

Obrázek 11.6: Ultrafiltrační charakteristika

Vzhledem k přímé závislosti ultrafiltrace UFR na transmembránovém tlaku TMP se stanovuje ultrafiltrační koeficient:

\[
K_{UF} = \frac{UFR}{TMP}.
\]

(11.5)

11.1.3 Dialyzační roztoky

Dialyzáty se připravují v mísicím boxu dialyzačního monitoru z předem upravené vody a koncentrátu. Je třeba si uvědomit, že látky propouštěné membránou dialyzátoru mohou podle rozdílu koncentrací přecházet jak z krve do dialyzátu, tak naopak. Proto látky, které se mají z krve odstranit v dialyzátu chybí a ty, které se mají v krvi zachovat musí být v dialyzátu přibližně ve stejné koncentraci. Všechny elektrolyty jsou v dialyzátu ve formě chloridu. Sodík je z větší části ve forměchloridu sodného, zčásti však ve formě acetátu (octanu) nebo bikarbonátu (kyselého uhličitanu sodného NaHCO₃). Typické hodnoty koncentrací iontů a látek v plasmě jsou uvedeny v Tabulce 11.1, [24].

Tabulka 11.1: Koncentrace látek v plasmě

<table>
<thead>
<tr>
<th>látky</th>
<th>norma: [mmol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>135±147</td>
</tr>
<tr>
<td>K</td>
<td>4,0±4,8</td>
</tr>
<tr>
<td>Ca</td>
<td>2,1±2,8</td>
</tr>
<tr>
<td>Mg</td>
<td>0,65±1,1</td>
</tr>
<tr>
<td>Cl</td>
<td>98±107</td>
</tr>
<tr>
<td>acetát</td>
<td>–</td>
</tr>
<tr>
<td>bikarbonát</td>
<td>22±26</td>
</tr>
<tr>
<td>glukóza</td>
<td>4,16±5,27</td>
</tr>
</tbody>
</table>

Spotřeba dialyzačního roztoku je průměrně 100 ÷ 200 l. U průtočných systémů se připravuje průběžně z koncentrátu v poměru 1:34. Vysoká sanilita koncentrátu pro acetátovou
dialýzu (cca 200 g NaCl/l) ničí většinu mikroorganismů, které se snad do něj dostaly. Má tedy samosterilizující schopnost. To neplatí u bikarbonátu. Bikarbonátová dialýza se liší od dialýzy acetátové jak technickým řešením, tak klinickým významem.

Při dialýze je třeba z těla pacienta odstranit mimo jiné látky také volný H⁺ iont, který způsobuje kyselost vnitřního prostředí – acidózu. Hodnoty pH plasmy mohou být jen 7,36 + 7,42. Regulaci kromě jiného zajišťuje i systém kyselin uhličité H₂CO₃ a bikarbonátu HCO₃⁻. Právě bikarbonát váží volný iont vodíku podle rovnice:

\[H^+ + HCO_3^- \Leftrightarrow H_2CO_3 \Leftrightarrow CO_2 + H_2O. \] (11.6)

Vzniknuvší kyselina uhličitá se rychle rozkládá na oxid uhličitý, který je vydýchán a vodu. Obnovu bikarbonátového iontu zajišťují v organismu ledviny. Při jejich selhání je třeba jej dialýzou do organismu doplnit.

V počátcích realizací hemodialýzy byl bikarbonát dodáván do dialyzátu formou rozpustného hydrouhličitanu sodného NaHCO₃, který ve vodném roztoku disocíuje na iont sodíku a iont bikarbonátu. Nutný vápník byl dodáván ve formě chloridu vápenatého CaCl₂. Ten se však při vyšším pH dialyzátu sloučoval s uhličitanem sodným a vytvářel nerozpuštěný uhličitan vápenatý CaC₂O₃ – kotelní kámen. Celý proces vedl k poškození přístroje. V současné době se bikarbonátový dialýzát připravuje z koncentrátu o dvou složkách: bikarbonát a chlorid vápenatý. Ostatní látky se rozdělují podle typu přístroje.

Při nahrazení bikarbonátu octanem získáme acetátový dialyzáční roztok, který je stabilní i v přítomnosti vápníku. Po difuzi do krve je organismus schopen jej metabolizovat a tvořit bikarbonát. Při dialýze sice uniká část bikarbonátu z krve do dialyzátu, ale acetát proudí opačným směrem rychleji díky své relativně vysoké koncentraci v dialyzátu 35 ÷ 40 mmol/l.

Problémy nastávají při aplikaci vysoce účinných dialýzátorů, kdy popsané procesy jsou tak rychlé, že pacient nestačí přiváděný acetát metabolizovat. Tím se může acidóza pacienta zhoršit a objevují se i klinické obtíže – výrazný pokles tlaku krve.

11.1.4 Technické řešení hemodialýzačního systému

V předchozím odstavci bylo uvedeno principiální blokové schéma hemodialýzačního systému, Obrázek 11.2. Průtokové schéma s vyznačením základních funkčních bloků a kontrolních i měřicích míst je na Obrázek 11.7.

Dialýzátová část obsahuje blok přípravy dialýzačního roztoku, jeho ohřev, odvzušňení, potřebná čerpadla pro zabezpečení průtoku dialýzátorem. Součástí jsou i nezbytné snímače hladin, tlaku, vodivosti, teploty, průtoku a úniku krve s odpovídajícími elektronickými obvody (mikroprocesorem) k měření, regulaci a signalizaci, včetně alarmů. Krevní část sestavá z peristaltického krevního čerpadla, heparinové pumpy a snímačů tlaku krve, ultrazvukového detektoru bublin s hladinoměrem na venózním váčku jižšeným optickým detektem. Nepostradatelná je venózní klapka. Funkce krevní části včetně měření a signalizace alarmu je rovněž řízena elektronickými obvydly či mikroprocesorem.

Koncentrát je míchán s vodou již ohřátou; stejně tak blok odvzušňení pracuje za ohřevem nebo je s ním kombinován. Vždy předchází čidlům teploty a vodivosti. Množství
vzduchu rozpuštěného ve vodě je závislá na její teplotě a tlaku. Odvzdušnění je třeba zabezpečit na hodnotu 4÷5 ml/l. Provádí se buď přehřátím a vyvoláním turbulencí v roztoku nebo častěji vysokým podtlakem při kterém se bubliny plynů uvolní. Využívá se k tomu tryska na vstupu odvzdušňovacího čerpadla. Odvzdušňovací podtlak by měl být o 20 ÷ 30 kPa vyšší než maximální podtlak v dialyzátu, [24].

Čerpadla dialyzačního roztoku bývají zpravidla dvě. Jedno zabezpečuje požadovaný průtok, druhé zajišťuje potřebný podtlak v dialyzátové trase. Čerpadla mohou být zubová, ale také peristaltická, podobně jako čerpadla krevní. Standardní průtok je 500 ml/min. Vodivost dialyzátu je cca 14 mS/cm.
Krevní čerpadla musí splňovat řadu požadavků: musí být samonasávací, musí pracovat do přetlaku 80 ÷ 400 kPa, musí mít plynule nastavitelný průtok 50 ÷ 400 ml/min a nesmí způsobovat hemolýzu (rozrušení červených krve). Těmito požadavkům vyhovují peristaltická čerpadla s plnou okluzi. Průtok krve je odvozován z otáků čerpadla. Průběh tlaku krve v krevní trase hemodialyzačního systému při dvou jehlovém režimu je naznačen na Obrázek 11.8, [24].

Obrázek 11.8: Průběh tlaku krve při dvou jehlovém režimu

Heparinizace

Antikoagulačním prostředkem je zpravidla heparin, což je mukopolysacharid. Podané množství je závislé na koagulačních vlastnostech krve pacienta, typu dialyzátoru a průtoku krve. Heparin se obvykle podává formou úvodní dávky ihned po zavedení dialyzačních jehel, před napojením na krevní trasu systému. U kapilárních dialyzátorů se část heparinu přidává do fyziologického roztoku, kterým se mimotělní oběh krve před dialýzou proplachuje. Během dialyzy se heparin podává v dávkách s časovým odstupem nebo spojitě s infuzí – heparinovou pumpou s průtokem do 20 ml/hod. Při *regionální heparinizaci* se heparinová infúze zavádí před dialyzátorem a za dialyzátorem se její účinek ruší protaminsulfátem, dodávaným rovněž infuzí. Tento způsob je však rizikový a pracný – vyžaduje častá měření srážlivosti krve.

Při užití dialyzátorů s biokompatibilními membránami je možné dialyzovat pacienty i bez heparinu. Podmínkou však je vysoký průtok krve a pravidelně (0,5 ÷ 1 hod) proplachování mimotělního oběhu cca 100 ml fyziologického roztoku, [24].

Jedno jehlová dialýza

Snaha o snížení zátěže pacienta dvěma několikrát týdně opakovanými vpichy vedla k rozvoji jedno jehlové dialýzy. Realizace je možná užitím jednoho krevního čerpadla a dvou klapek na arteriálním a venózním setu. Režim se dvěma krevními čerpadly aplikuje každé čerpadlo vždy na arteriální a venózní set samostatně.
Účinnosti takto prováděných dialýz se pohybují od 60 \div 80 \% u jednoho čerpadla a až po 85 \div 90 \% v režimu dvou čerpadel. Zásadní nevýhodou však je nutnost užití speciálních krevních setů.

Jistou modifikací jednojehlové dialýzy je užití koaxiální jehly. Jedná se o jehlu, jejíž vnitřní část je zatažena do vnějšího pláště, aby nedocházelo ke dvojí perforaci fistule. Po zavedení jehly se vysune její vnitřní jehlou se po očistě vrací. Vlastní dialýza se potom od standardní dvou jehlové v ničem neliší, [24]. Rozdíl je v průměrech jehel: standardní 1,5 \div 2 mm, koaxiální 2,4 \div 2,8 mm.

Řízení ultrafiltrace

Přesné řízení ultrafiltrace je založeno na stanovení potřebného objemu tekušiny, které se má pacientovi odebrat. Je to součet diference předdiazyzační váhy a suché váhy (na konci dialýzy) a všech tekušin i tuhé potravy konzumovaných pacientem během dialýzy, včetně podaných infuzí. Tlakové poměry v mimotělním oběhu se potom řídí tak, aby se požadované hodnoty ultrafiltrace dosáhlo.

Řízení ultrafiltrace je v zásadě možné podtlakem v dialyzátu, stabilizací transmembránového tlaku nebo přímým řízením ze změřených hodnot ultrafiltrace. U prvních dvou způsobů je třeba znát ultrafiltrační charakteristiky dialyzátorů a z těch pak TMP. Třetí způsob využívá několika principů měření ultrafiltrace a řízení tlaků mikroprocesorem, [24].

Hemodialýza s profilováním

Tento typ dialýzy je také označován jako _sekvenční sodíková terapie_. Sodík je totiž spolu s močovinou nejdůležitější osmoticky aktivní látkou v extracelulárním prostoru. Při dialýze s profilováním se vhodnou manipulací s koncentrací sodíku v dialyzátu dá vytvořit stav, kdy se celková ultrafiltrace, tedy odebraná tektuina z organismu, rozdělí rovnoměřně mezi extra a intracelulární prostor.

Riziku z poklesu tlaku krve v důsledku hypovolémie (malý objem tektuina v cévním systému) lze zabránit právě vhodným profilováním koncentrace sodíku v dialyzátu a ultrafiltrační rychlostí. Zásadním předpokladem úspěchu je tedy znalost kinetiky sodíku.

Existují procesorem řízené dialyzační systémy umožňující předprogramovat ultrafiltrační profil i profil koncentrace Na, K a HCO₃⁻. Programové vybavení propočítá průběh plasmatické koncentrace Na během dialýzy. Vyžaduje to však přesné zadání výchozí koncentrace sodíku v dialyzátu a kvalifikované odhady clearence sodíku a močoviny. Optimum by bylo automatické zpětnovazební řízení koncentrace Na v dialyzátu z průběžného měření jeho plasmatické koncentrace s ohledem na stav hemodynamiky pacienta, [24].
11.1.5 Peritoneální dialýza

Peritoneální dialýza je procesem, kdy dialyzační membránou je peritoneum (blána pobřišnice). Do prostoru peritonea se katetrem přes stěnu břišní aplikuje 2,5 l sterilního dialyzního roztoku. Přes bohaté cévní zásobení peritonea difundují zplodiny látkové výměny z krve do dialyzátu. Po několika hodinách se dialyzát vymění za nový.

Ultrafiltrace se při této dialýze řídí osmoticky tím, že se do dialyzátu přidá glukóza, která svou osmotickou aktivitou „táhne“ vodu z krve do dialyzátu. Předností peritoneální dialýzy je možnost její aplikace u pacientů, kteří kvůli stavu cévního systému nemožnou být napojeni na mimotělní oběh krve při hemodialýze nebo hemofiltrace. Zpravidla ji však nelze aplikovat déle než 5 let (výskyt peritonitidy – zánětu peritonea).

11.2 HEMOFILTRACE

Filtrační techniky očistí krve využívají ultrafiltraci jak k odstranění nadbytečné tekutiny, tak k odstranění zplodin látkové výměny. Charakteristickým rysem této metody je stejná rychlost odstraňování látek bez ohledu na jejich molekulární hmotnost až do maximální propustnosti membrány. Srovnání účinnosti v odstraňování látek u zdravé ledviny, u hemofiltrace a u hemodialýzy je uvedeno na Obrázek 11.5. Princip hemofiltrační metody je na Obrázek 11.9.

Obrázek 11.9: Princip hemofiltrace

Hemofiltr je membránový člen s vysoce propustnou membránou. Přetlakem na krevní straně se vytváří krevní filtrát, který obsahuje také látky k odstranění. Hemofiltrát se odvádí do odpadu a nezbytné látky s odpovídajícím objemem vody jsou do krve vráceny formou substitučního roztoku. Bilanci obou tekutin je třeba monitorovat.
Jednotlivé filtrační techniky se liší způsobem vytváření přetlaku a principem bilančního systému při udržování rovnováhy mezi rychlostí odebrání filtrátu a rychlostí přívodu substitučního roztoku. Některá řešení jsou vhodná jen pro akutní selhání ledvin.

11.3 PLAZMAFERÉZA

Plazmaferéza nebo také transferéza je metodou separace plazmy z krve. Krevní plazma je nositelkou nejen vody, ale i řad organických a anorganických látek včetně katabolitů.

Princip metody spočívá v odběru 0,5 ÷ 1 litru plné krve od pacienta. Odstěhováním se oddělí formované krevní částice (červené, bílé krvinky a krevní deštěčky) od plazmy, která je posléze nahrazena substitučním roztokem. Krevní částice a substituční roztok (zpravidla fyziologický roztok) jsou potom infuzí navráceny pacientovi. Doba výkonu je 2 ÷ 5 hodin. Separace krevní plazmy se provádí v separátorech centrifugací nebo filtrační plazmaferézou.

12 Podpora senzoriky

V současné době jsme na úrovni smyslových orgánů schopni elektronickými prostředky podporovat sluch a zrak. V obou případech se jedná o soubory receptorů – specializovaných struktur senzorických nervů reagujících na specifické stimuly: zvuk a světlo. Podpora sluchu je možná sluchovými protézami, které podle rozsahu poškození orgánu a ztráty sluchu jsou v provedení sluchadel nebo kochleárních neuroprotéz.

Vývoj zrakové neuroprotézy je zaměřen na stimulaci neuronů v oblasti zrakové kůry mozku. Rozvoj aplikací umělé sítnice však souvisí jak s ryze materiálovými vlastnostmi užitých vrstev implantátu, tak s chirurgickou implantační technikou.

12.1 PODPORA SLUCHU

Dlouhodobým pobytem v prostředí se zvýšenou hladinou hluku (profesioně), následkem chronických zánětů třesoucí nebo prohlubující se otosklerózou (skleróza části ucha) dochází k posunu sluchového prahu, ale někdy také ke ztrátě percepce (vnímání) zvuků až k nedoslýchavosti. Ta se může stupňovat až k hluchotě. Z terapeutického hlediska není podstatný stupeň sluchové vady, ale místo léze (porucha struktury) v řetězci jednotlivých částí sluchového orgánu. Z toho hlediska se rozlišují tři typy sluchových vad či poruch:
- **vada převodního systému**
 s lokalizací od zevního zvukovodu po oválné okénko,
- **vada percepční**
 s poruchou činnosti vláskových a dalších funkčních elementů vnitřního ucha, porucha vláken sluchového nervu,
- **vada centrální**
 s lokalizací ve sluchové dráze CNS.
Porucha převodního systému může být způsobena perforací bubínku, záněty středoušní nebo Eustachovy tury, osteosklerózou. Ve všech případech se snižuje převodní funkce zpravidla pro všechny tóny, vyjímečně s převahou na nízkých nebo vysokých frekvencích. Celková ztráta sluchu může dosáhnout až 70 dB.

Při percepčních poruchách je patologickým procesem buď postižen blanitý labyrint, především vláskové buňky a nebo sluchový nerv (např. úrazem). Charakteristikou je vzestup sluchového prahu na frekvenci 4 kHz až o 45 dB.

Obrázek 12.1: Rozdělení sluchových protéz

Systémy, které zlepšují slyšení nedoslýchavým pacientům jsou označovány jako sluchové protézy. S ohledem na rozsah ztráty sluchu se rozdělují na sluchadla a kochleární neuroprotézy, Obrázek 12.1.

12.1.1 Sluchadla

Sluchadlo definujeme jako elektroakustický systém umožňující zesílit zvuk v zevním zvučném. Podle technického – obvodového řešení rozeznáváme sluchadla:

- analogová,
- analogová s digitálním řízením,
- digitální.

Trasa zpracovávaného akustického signálu může být 1 ÷ 4 kanálová. Podle provedení a uživatelských požadavků či komfortu jsou sluchadla:

- kapesní
 kdy sluchátko je s mikrofonní vložkou a elektronickými obvody propojeno kabelem. Riziko akustické zvětšené vazby je malé, proto jsou tato sluchadla určena pro kompenzaci těžkých nedoslýchavostí,
- boltcová (závěsná)
 v miniaturním provedení určená pro zavěšení na ušní boltec,
• brýlová
 kdy hybridní integrovaný obvod systému sluchadla je uložen v raménku brýlí. Toto provedení bývá využíváno pro sluchadla s kostním vibrátorem,
• nitroušní
 která se vkládají do zevního zvukovodu. Tento typ bývá vhodný pro kompenzaci malé a střední nedoslýchavosti.

Principiální bloková struktura sluchadel je prostá. Skládá se totiž z mikrofonu, zesilovače s nastavitelným zesílením, tónových filtrů a sluchátka. Napájecím zdrojem jsou zpravidla zinkové články se vzdušnou polarizací o napětí 1,5 V. Podle velikosti odběru je životnost těchto baterií od 70 do 430 hodin.

Původní koncepce a realizace sluchadel s plně analogovými obvyly byla nahrazena digitálním řízením při analogovém zpracování akustických signálů. Digitální řízení umožnilo přesnější nastavení parametrů pro více poslechových situací s uložením do paměti pomocí speciálního programátoru nebo adaptéru k PC.

Základními technickými parametry sluchadel jsou:
• maximální zisk
 udávaný pro frekvence 500, 1.000 a 2.000 Hz nebo 500, 800 a 1.600 Hz. Typická hodnota je 40 ± 80 dB podle oboru použití,
• maximální výstupní akustický tlak
 udávaný pro objem 2 cm³ (umělé ucho). Hodnota má být v oblasti přijemného poslechu uživatele. Aplikuje se odřezání dynamických špiček automatickým řízením zisku (AGC) – kompresí signálu. Typické hodnoty tlaku jsou až 150 dB, časové zpoždění při náběhu špiček 2 ± 6 ms, doba zotavení 20 ± 5.000 ms,
• frekvenční charakteristika
 definuje šíři přenášeného pásma pro optimální srozumitelnost řečového signálu. Tónové clony bývají nastavitelné se strmostí 12 ± 18 dB/okt. Frekvenční rozsah u špičkových provedení může být 100 ÷ 6.700 Hz,
• maximální zkreslení signálu
 definované pro jistou hladinu akustického tlaku na vybraných frekvencích, zpravidla 1 ± 5 %,
• hladina šumu
 průměrně bývá 15 ± 27 dB.
Obrázek 12.2: Blokové schéma digitálního sluchadla

Zpravidla všechna sluchadla jsou vybavena indukční cívkou umožňující jejich užívání při telefonování (včetně mobilních telefonů) a v místnostech vybavených indukční smyčkou (konferenční sály). Na Obrázek 12.2 je uvedeno principiální blokové schéma špičkového miniaturního čtyř kanálového digitálního sluchadla (Siemens).

Systém tohoto digitálního sluchadla využívá čtyř digitálních signálových procesorů (slovo se 23 bity) pro zpracování řečového signálu ve 4 kanálech s volitelnou kompresí. Systém umožňuje nastavení mezních frekvencí pásem jednotlivých kanálů a využití mezi-kanálových filtrů, selektivní potlačení rušivých složek signálu (např. hluku). Užívá zdvojený mikrofon pro směrový a všesměrový režim, telefonní cívku. Vybaven je dvěma poslechovými programy (univerzální a do hluku) využívajícími ochranu proti přebuzení. Systémem je možné poslouchat i hudbu, [41].

12.1.2 Kochleární neuroprotézy

Pacientům, kteří trpí těžkou ztrátou sluchu, tzn. na řečových frekvencích mají ztrátu kolem 90 dB a přitom nemají poškozený hlemýžď a jejich sluchový nerv je dráždivý, může být implantována kochleární neuroprotéza. Takový systém umožňuje vhodným elektrickým drážděním vyvolat sluchový vjem. Kvalita subjektivního vjemu je však jiná než u normálně slyšícího, zdravého člověka. Mozek pacienta se musí znova naučit tyto podněty vyhodnocovat.

Principiálně je možné elektrody implantované do hlemýžď budit signálem přivedeným: vodiči transkutánně, induktivní vazbou nebo telemetricky. Počet kanálů zpracovávajících akustický signál, a tím i počet implantovaných elektrod může být různý: 1, 4, 8, 12, 16 nebo 22. Princip metody je naznačen na Obrázek 12.3.
Obrázek 12.3: Princip aplikace kochleární neuroprotézy

K napájení implantovaných obvodů je užívána energie získaná z výkonu nosné vlny při telemetrickém přenosu na frekvenci 2,5 MHz. Stimulační impulsy jsou bifazické o šířce od 19,2 do 400 µs a velikosti od 20 do 1.750 µA. Dostupný je popis dvou typů strategií časového rozdělení signálu do jednotlivých kanálů: CIS a SPEAK.

Obrázek 12.4: Blokové schéma kochleární neuroprotézy
12.2 PODPORA ZRAKU

Světlo, jako viditelná část spektra elektromagnetického záření, působí na fyziologické, biochemické i psychické funkce organismu. Zrak patří mezi nejcitlivější smyslové orgány lidského organismu. Práh citlivosti pro zelenou barvu světla je 5 µW/m². Pro vznímání jasu je rozhodující jeho časové a prostorové rozložení na sítnici – prahový jas je 1 µcd/m² (5 ÷ 15 světelných kvant). Prostřednictvím zraku získáváme z okolního prostředí téměř 80 % všech informací.

Fyzikální podstata funkce oka jako optické zobrazovací soustavy je známá. Zpracování obrazu vytvořeného oční čočkou na sítnici a jeho přenos do center vidění v mozku je však stále náplní základního výzkumu mnoha vědeckých pracovišť.

Příčin poruch vidění i slepoty je celá řada. K nejzávažnějším patří poruchy světločivné vrstvy oka – sítnice. Ta je tvořena deseti vrstvami a obsahuje světločivé elementy – tyčinky a čípky a také tři druhy neuronů: buňky bipolární, gangliové, horizontální a amakrinní (bezvláknité). Tyčinky jsou zvláště citlivé na světlo – jsou to receptory pro vidění za šera (skotopické vidění) s jasy menšími než 3 mcd/m². Čípky mají vyšší práh dráždivosti a zajišťují barevné vidění (fotopické vidění) s jasy většími než 30 cd/m².

Tyčinky a čípky tvoří synaptická spojení s bipolárními buňkami, které se dále synapticky napojují na buňky gangliové. Axony gangliových buněk se sbíhají a opouštějí oko jako optický (zrakový) nerv. Po překřížení z jedné a druhé poloviny sítnice potom končí v části thalamu (corpus geniculatum laterale). Tam začíná binokulární zobrazování. Další neuronová síť přenáší obrazovou informaci do zrakové kůry (zrakového kortexu - primární zrakové recepční oblasti) v zadní části týlního laloku mozku, [51].

12.2.1 Zrakové neuroprotézy

Zraková kůra je tvořena mnoha druhy nervových buněk a vláken nejčastěji v 6 vrstvách. Nervové buňky nižších úrovní zpracovávají obrazové informace (signály čípoků) zpracovávají poměrně jednoduché zrakové podněty jako pohyb, barvu, intenzitu světelného toku. Nervové buňky zrakových polí kůry mozkové v týlních, spánkových a temenních lalocích skládají po paralelním převodu tyto jednoduché informace do složitějších celků.
Princip zrakové neuroprotézy je naznačen na Obrázek 12.5. Obrazová informace je kódována na elektrickou a po zpracování signálovým procesorem je vedena přes transkranialní konektor k implantátu – stimulačnímu elektrodovému poli ve tvaru „vlasového kartáče“. Řádově 100 mikroelektrod ve tvaru kónických jehel délky 1,5 mm a průměru při základně 80 µm musí proniknout do kůry mozkové až na úroveň zrakového kortexu v hloubce 1,5 ± 2 mm, [52].

Obrázek 12.5: Princip zrakové neuroprotézy

12.2.2 Umělá sítnice

Princip všech provedení umělých sítnic spočívá v podpoře funkce sítnice původní tak, aby sled elektrických impulsů odpovídajících obrazové informaci se mohl šířit optickým nervem do vyšších zrakových center v kůře mozkové.

Jeden z principů využitých při vývoji umělé sítnice je naznačen na Obrázek 12.6. Optická informace je snímač CCD kamерou upevněnou na pacientových brýlích. Elektrický signál reprezentující obrazovou informaci je zpracováván a svazkem laseru přenášen k implantátu. Vlastní implantát je tvořen sendvičovou strukturou elektrodového pole ve tvaru proužku mezi dvěma čipy tvořenými polem fotodiod a stimulátoru. Elektrodové pole je z flexibilního polyamidu umožňujícího dokonalé tvarování a přilnutí k sítnici. Potřebný elektrický příkon nepřesahuje 250 µW.

Zásadními problémy aplikace však jsou biokompatibilita užitých materiálů, adaptace sítnice na implantát a vlastní chirurgický výkon. Vyvíjeny jsou i odpovídající programové prostředky zpracování a přenosu signálů, [52].
13 Automatizované hematologické a biochem. laboratoře

13.1 BIOCHEMICKÁ LABORATOŘ

Klinická laboratoř je zodpovědná za analýzu pacientových vzorků, ze kterých mají být zjištěny odpovídající informace o diagnóze onemocnění a efektivitě terapie. Základní části klinické laboratoře tvoří sekce pro biochemii, hematologii, mikrobiologii a krevní banka.

Biochemická část zajišťuje analýzy krve, moči, mozkomišního moku a dalších roztoků, ve kterých určuje řady významných látek. Největší uplatnění elektroniky je v biochemické a hematologické laboratoři. Hematologická laboratoř určuje počty a charakteristické vlastnosti částic krve (červených krvinek, bílých krvinek a krevních destiček), které jsou důležité pro určení fyziologických vlastností krve. Mikrobiologická laboratoř studuje části tkání a tělesné tekutiny a zkoumá, zda jsou v nich přítomny patologické mikroorganismy. Zde existují automatické monitory pro testování přítomnosti mikroorganismů.
Intenzivní péče o pacienty je založena na vyhodnocení výsledků dodaných klinickou laboratoří. Proto přesnost a věrohodnost těchto výsledků má velkou důležitost. Dobrý výběr metod a přístrojů je pro to základem.

Druhou důležitou charakteristikou mnoha testovacích procedur je rychlá odezva, protože v kritických případech se volí terapie právě v závislosti na těchto výsledcích. Použití elektronických přístrojů umožňuje laboratořím zkrátit doby potřebné pro analýzu vzorků.

13.1.1 Spektrofotometr

Spektrofotometrie je základem pro řadu přístrojů používaných v klinické biochemii. Základním důvodem pro to je snadnost měření, zaručená přesnost a možnost použít této techniky u automaticky pracujících přístrojů.

Spektrofotometrie je založena na vlastnostech látek, které jsou předmětem zájmu klinické biochemie, selektivně pohlcovat emitovanou energii záření různých vlnových délek. Pro největší počet aplikací leží použití vlnové délky v rozsahu ultrafialového záření (200 až 400 nm), viditelného záření (400 až 700 nm) a oblasti blízké infračervenému záření (700 až 800 nm) s tím, že největší množství přístrojů pracuje v oblasti viditelného záření.

Obrázek 13.1: Spektrofotometr – základní princíp

Základním principem spektrofotometru je využití absorpčních vlastností látek, v určité vybrané malé části elektromagnetického spektra, k měření jejich koncentrace v dané substanci. V převážně většině případů nemají tyto látky, normálně nalezené ve vzorcích z pacientů (jako je sérum, moč a pod.), příslušné absorpční charakteristiky. V takových případech jsou k ním přidány vhodné reagencie, které způsobí, že se absorpční charakteristiky upraví. Produkty reakce jsou pak pro analýzu umístěny do kyvety. Kalibrací procedura musí započíst možný rozdíl v koncentraci reakčních produktů a původní látky, která byla předmětem zájmu.
13.1.2 Průtokový cytometr

Průtoková cytometrie je laboratorní metodou, která umožňuje současné měření řady parametrů na velkém množství částic. Je uplatnitelná v celé řadě odvětví, největší uplatnění však našla v medicíně a v biologii protože umožňuje měřit mnohé chemické a fyzikální vlastnosti buněčných suspensí.

Princip metody

Připravená buněčná suspenze (umístěná ve zkumavce) je vložena do přístroje, kde je vzorek pneumaticky dopraven do úzké trubice, ze které je injektovan do trysky, kterou proudí velkou rychlostí vhodná kapalina. Tato kapalina hydrodynamicky sefouzuje buňky tak, že vycházejí z trysky v jedné řadě. Tomuto jevu se říká hydrodynamická fokusace. Do proudu seřazených buňek je nasměrováno záření laseru, kde každá buňka je ozářena, jak přes paprsek laseru prochází. Při dopadu paprsku laseru na buňku dochází k rozptylu světla s tím, že světlo, které vychází z plochy buňky ve stejném směru jako primární paprsek koreluje s rozměrem buňky. Rozptýlené záření, které vychází v úhlu 90° k primárnímu paprsku (bývá označováno jako boční rozptyl) odpovídá granulární buňka. Buňky bývají obarvené různými fluorochromy (to jsou barviva, které se váží na nukleové kyseliny jako boční rozptyl světla), které vycházejí z trysky ve stejném směru jako boční rozptyl. Buňky bývají obarvené různými fluorochromy (to jsou barviva, která se váží na nukleové kyseliny či jiné součásti buňek).

Dopad paprsku laseru vyvoláva takto obarvených buňek fluorescenci, jejíž intenzita závisí na množství vázaného barviva (vázané množství fluorochromu je funkcí množství látky, která je předmětem našeho zájmu).

Světlo vznikající interakcí buňek, usměrňených hydrodynamickou fokusací, při průchodu paprskem laseru je rozděleno systémem hranolů, optických filtrů a zrcadel podle vlnové délky. Jednotlivé světelné signály jsou převedeny na odpovídající elektrický signál (nejčastěji pomocí fotonásobičů) a registrovány.

Výsledky měření na průtokovém cytometru bývají prezentovány ve formě grafů a tabulek. Ke grafickému zobrazení se používají jednak jednouparametrové histogramy, kde na ose X je znázorněna intenzita signálu a na ose Y množství buňek. Používají se i dvouparametrové histogramy, kde na ose X je znázorněno množství buňek a na ose Y je znázorněna intenzita druhého signálu a množství buňků.

Kromě jednoduchých cytometrů existují i složitější přístroje, které umožňují třídět buňky. Princip tohoto třídění je následující:

Piezolektrický měnič je spojen s tryskou řídící proud buněk a vytváří oscilace, které přetvářejí souvislý proud kapalin s buňkami do formy kapec. Kapky jsou vytvářeny s tak vysokou četností, že každá kapka obsahuje pouze jednu buňku. Pro další práci přístroje je definováno třídící okno. Třídící elektronika umístí na kapky elektrický náboj v závislosti na veličině, kterou zadáme (např. velikost buňek). Kapky pak dále prochází mezi destičkami, které našlejí impulsy oscilací. Výsledné elektrické pole mezi destičkami vytváří proud kapec a jejich směr závisí na tom, zda není klidný či záporný náboj. Umístěním sběrače do cesty vychylovaných kapek můžeme rozdělit buňky s přesností na 99% s rychlosti několik tisíc buňek za sekundu.
Obrázek 13.2: Principiální uspořádání průtokového cytometru

13.2 HEMATOLOGICKÁ LABORATOŘ

K přístrojům, které se používají na vyhodnocování vlastností krve patří:
- počítače krve
- měřiče pH krve
- přístroje pro měření množství krevních plynů (O₂, CO₂)

13.2.1 Základní vlastnosti krve

Krev sestává z krevních buněk a krevní plasmy. Mezi krevní buňky patří červené krvinky, bílé krvinky a krevní destičky. Každá z těchto skupin buňek má při činnosti organismu svou specifickou úlohu. Červené krvinky slouží k transportu kyslíku do organismu a CO₂ z organismu. Výměna plynů se děje v plicích. Plynová vázaná na hemoglobin, který je v červených krvinkách obsažen. Bílé krvinky jsou součástí imunitního systému organismu a slouží pro boj s infekcí. Červené krevní destičky způsobují srážení krve a v případě poranění mají zamezit vykrvácení. Jednotlivé krevní buňky se od sebe liší nejen svoji funkci, ale také svoji velikostí a počtem. U krve se nejčastěji žádá stanovení následujících parametrů:
Normální červené krvinky
(RBC - red blood cell)

Je to malý, bezjaderný bikonkávní disk. Je výrazně elastická a může prodělávat značné změny tvaru při průchodu úzkými kapilárami. Průměr červené krvinky je 5,5 - 8,8 µm, průměrná hodnota 7,3 µm. Normální počet červených krvinek je u dospělého muže 5,5.10^6, u dospělé ženy pak 4,4.10^6.

Standardní metoda (počítání krvinek na speciálním podložním sklíčku pod mikroskopem) má chybu asi 15%. Klesne-li počet červených krvinek pod 4,5.10^6 u muže a u ženy pod 4.10^6, lze vyslovit podezření na patologický stav. U novorozenců je počet červených krvínek 6.10^6 až 7.10^6 a během 14 dnů po narození klesá na hodnotu mírně větší, než má dospělý člověk. Při analýze červeného krvevního obrazu se vždy udává:

a) Počet červených krvinek v mm^3.
b) Obsah hemoglobinu v gramech na 100 ml.
Dále je nutno znát ještě další hodnoty:
c) Relativní objem masy červených krvínek (Hkt - hematokrit).
Tento relativní objem se zjišťuje odstředěním krve v centrifuze v kalibrovaných zkumavkách (hematokritech). Do odstředované krve se přidávají činidla proti srážení (např. heparin). Tato činidla nesmějí měnit objem červených krvínek. Objem červených krvínek je normálně 41 až 45% z celkového objemu krve.
d) Střední objem červené krvínek (MCV - mean cell volume)
Normální objem je 78 - 94 µm^3.

\[
SOČK = \frac{\text{objem masy červených krvínek v ml na l krve}}{\text{počet červených krvínek v milionech na mm}^3} \quad (13.1)
\]

e) Barvivo červené krvínek (MCH - mean cell hemoglobin)
Průměrný obsah hemoglobinu v erytrocytu (červené krvínce) v pg (pikogramech).

\[
BČK = \frac{\text{hemoglobin v gramech na litr krve}}{\text{počet červených krvínek v milionech na mm}^3} \quad (13.2)
\]

Průměrná hodnota je 29,5 ± 2,5 pg.

f) Barevná koncentrace červené krvínek (MCHC - mean cell hemoglobin concentration)
Tato hodnota vyjadřuje množství hemoglobinu v červených krvínkách. Průměrná hodnota barevné koncentrace je 35 ± 3g ve 100 ml červených krvínek.

\[
BKČ = \frac{\text{hemoglobin v gramech na ml krve} \times 100}{\text{objem masy červených krvínek v ml}} \quad (13.3)
\]

Pro snazší orientaci v literatuře je v závorce vždy uvedena anglická zkratka jednotlivé veličiny. Stanovení obsahu hemoglobinu v krvi je důležité, protože hemoglobin přenáší do tkání organismu kyslík, který se do něj dostane dýcháním.
Bílé krvinky

Za fyziologických podmínek je hranice počtu leukocytů 4-9 10^9 na litr krve. Krev ke stanovení počtu leukocytů je nutné odebrat za bazálních podmínek (ráno, ve stavu fyzické a mentální relaxace, na lačno). V počtu bílých krvinek nejsou rozdíly mezi pohlavími.

Krevní destičky

Krevní destičky (trombocyty) jsou nejmenší elementy krve. Jsou bezjaderné a bezbarvé a mají tvar hladkých nepravidelně okrouhlých disků o průměru 2-4 μm a tloušťce 0,5-1 μm. Jejich objem (okolo 4-8 fl – femtolitr = 10^{-15} litru) je zlomek objemu erytrocytů. Počet krevních destiček činí 150-300 10^9 na litr krve. 2/3 destiček jsou v krevním oběhu a 1/3 je ve slezině. Jejich základní úlohou je ochrana organismu před ztrátou krve (pod ílejí se na srážení krve).

13.2.2 Počítání krvinek

Nejjednodušší metodou jak spočítat počet krevních buněk je použití speciálního podložního sklíčka a mikroskopu. Do krve se přidá činidlo proti srážení (např. heparin), vzorek se rozředí definovaným způsobem a komůrka podložního sklíčka se jím naplní. Tím je definován objem, ve kterém se počet krevních buněk počítá. Sklíčko má pro usnadnění počítání rastr. Metoda není absolutně přesná, ale je zatižena chybou protože při ředění krve předpokládáme, že krevní buňky se v celém vzorku rozdělí rovnoměrně. Tato metoda je pracná a pomalá. Pro biochemické laboratoře nevyhovuje. Na stanovení krevního obrazu existují v současné době výkonné automaty, které jsou za hodinu schopny zpracovat až 60 vzorků.

Pro počítání krevních buněk se využívá impedanční technika, pro hodnocení tvarových změn krvinek se využívá rozptyl laserového paprsku dopadajícího na povrch krvinek. Zde je nutno říci, že stejnosměrný proud přes buněčné membrány krvínek neprochází zatímco střídavý ano.

Vodičovostní princip stanovení počtu krevních buněk vychází z jednoduchých předpokladů. Vezmeme-li sloupec elektrolytu, do kterého vložíme dvojici elektrod a připojíme-li k elektrodám zdroj stejnosměrného napětí, pak velikost stejnosměrného proudu, který bude elektrolytem procházet, bude záviset na vlastnostech elektrolytu (chemickém složení, koncentraci a teplotě), průřezu sloupecky elektrolytu, kterým prochází proud a vlastnostech elektrod. Změníme-li velikost průřezu sloupecky elektrolytu (při ostatních parametrech nezměněných), změní se i velikost proudu. Z hlediska vedení stejnosměrného proudu je krevní plasma elektrolytem, zatímco krevní buňky jsou velmi špatným vodičem stejnosměrného proudu.
Krev je pro počítání krvinek ředěna a to méně pro počítání bílých krvinek a krevních destiček a více pro počítání červených krvinek. Principiální uspořádání snímače je velmi jednoduché. Do nádobky s krví je ponořena trubička, která má ve své stěně otvůrek srovnatelný s průměrem krevních buněk. Uvnitř trubičky je jedna elektroda, druhá je ponořena v nádobce s krví. V trubičce je podtlak, který nasává krev z nádobky do trubičky. Vždy, když některá z krevních buněk prochází otvůrku, změní se průřez elektrolytu v otvoru a tím i odpor mezi elektrodami, kterými prochází stejnosměrný proud. Velikost této změny souvisí s velikostí procházející krevní buňky. Můžeme tedy krevní buňky podle velikosti těchto změn rozdělit do skupin podle velikosti a spočítat. Může však dojít k tomu, že otvůrka v trubičce projde shluk buněk, který se ve svém důsledku projeví jako velká změna (tedy jako jedna velká krevní buňka) Pro potlačení chyby tohoto druhu je použito počítání třemi snímači současně. Pokud se výsledek počítání příliš neliší, je brán jako správný. Pokud necháme mezi elektrodami procházet proud o vyšším kmitočtu, projde buněčnou membránou a velikost změny impedance pak souvisí s vlastnostmi vnitřního obsahu buňky.

Jak bylo však uvedeno již na začátku, rádi bychom kromě počtu krvinek znali i některé další parametry (především množství hemoglobinu, který je v krvi obsažen). Množství hemoglobinu je možno určit například tak, že u červených krvinek pomocí vhodného rozrušíme obal buňky a dosáhneme tak toho, že hemoglobin přejde do zkoumaného vzorku krve. Množství hemoglobinu je pak možno stanovit kolorimetricky. Krev nasyčená kyslíkem je jasně červená, zatímco krev málo nasyčená kyslíkem je tmavě červená. Aby se odstranil vliv nasycení krve kyslíkem na stanovení množství hemoglobinu ve zkoumaném vzorku, je nutno pomocí vhodnéhočinidla převést hemoglobin na takovou sloučeninu, jejíž zabarvení nezávisí na množství kyslíku vázaného na hemoglobin.

13.2.3 Kolorimetrické určení obsahu hemoglobinu v krvi

13.2.4 Měření pH krve

Konzentrace vodíkových iontů v běžně používaných roztocích dosahuje hodnot zhruba od 1 mol/litr až do hodnot 10^{-14} molů na litr i nižších. Protože počítání se zápornými mocninami je nepohodlné, zavedl Sörersen tak zvaný vodíkový exponent pH definovaný jako záporně vztažený dekadický logaritmus koncentrace vodíkových iontů v roztoku obsažených:

$$pH = -\log(H^+)$$ (13.4)

Tímto způsobem je možno pro výše uvedený rozsah koncentrací vodíkových iontů vyjádřit pH v rozmezí 0 až 14. Čistá voda, která je neutrální má pH = 7, protože má při 25°C koncentraci vodíkových iontů 10^{-7} mol/litr.

Pro pH < 7 má roztok kyselou reakci, pro pH > 7 má roztok zásaditou reakci. Ukázalo se však, že k kyselosti, k zásaditosti roztoku rozhoduje aktivita vodíkových iontů (nikoliv jen jejich koncentrace), takže má přesně vzato pH významné záporné vztaženého logaritmu aktivity vodíkových iontů. V případě ředěných roztoků jsou si aktivita a koncentrace přibližně rovné. Normální hodnota pH arteriální krve je při 37°C rozmezí 7,35 až 7,45 a u venózní krve 7,32 až 7,42.

Měření pH

Standardní srovnávací elektrodou je elektroda vodíková, která je však pro praktické použití velmi nepohodlná. Proto se u rutinně používaných zařízení jako referenční elektroda používá elektroda kalomelová nebo elektroda stříbrochloridová, které patří mezi elektrody druhého druhu.

Elektrody druhého druhu jsou tvořeny kovem, na jehož povrchu je vrstva málo rozpustně soli tohoto kovu s anionem, který je pak přítomen v roztoku ve formě rozpustně soli s jiným kationem a svou aktivitou řídí potenciál elektrody. Elektrody druhého druhu jsou při měření pH významné především proto, že je lépe snadno reprodukovatelně připravit a že mají stálý potenciál.

Mimořádným případem je elektroda skleněná, která patří mezi elektrody iontově selektivní. Její vlastnosti závisí nejen na druhu skla, ale i na způsobu výroby elektrody, na jejím plnění a opracování povrchu. Její vlastnosti jsou individuální pro každou elektrodu. Na první pohled je zvláštní, že sklo, typický izolátor, může fungovat jako elektroda, jejíž potenciál je navíc závislý na pH. Kationy jsou však v silikátovém skeletu poměrně pohyblivé a povrch skla působí jako měnič iontů. Kationy skla se vyměňují za kationy z roztoku, přednostně za ionty vodíku, ty jsou totiž malé a do míst vzniklých vyloučení kationů skla se snadno "vejdou". Je tedy tato elektroda schopna propouštět ionty vodíku (odsuň název iontově selektivní elektroda).
Odpor skleněných elektrod

Podle velikosti vnitřního odporu bývají skleněné elektrody děleny do tří skupin:
- s malým odporom do 1 MΩ
- se středním odporem 1 až 100 MΩ
- s velkým odporem přes 100 MΩ

Nejpoužívanější elektrody patří do druhé skupiny. Užívá se buď sodných skel, ale mnohem častěji skel speciálních, obsahujících lithium, baryum, lanthan a další prvky, která umožňují měřit lineárně až do pH = 13. Elektrody této skupiny mívají baňky o průměru 5 až 25 mm a stěny poměrně tlusté (20 až 100 µm).

Velmi důležitá je závislost odporu skleněné elektrody na teplotě. U všech typů skel se stoupající teplotou se jejich odpor značně zmenšuje a závislost má exponenciální charakter. Tak například odpor skleněných elektrod, který při teplotě 5 až 10 °C činí 500 až 2000 MΩ klesne již při teplotách kolem 50 až 60 °C pod 100 MΩ.

Napětí měřené mezi skleněnou elektrodou a referenční elektrodou jsou řádově desítky milivoltů a mění se lineárně s pH měřeného roztoku. Strmá kalibrační křiva bývá okolo 60 mV na jednotku pH. Strmá je funkce teploty vzorku roztoku a zvyšuje se o 0,34% při vzrůstu teploty o 1 °C. Z tohoto důvodu musí být teplota vzorku spolu s teplotou elektrody udržována na konstantní hodnotě. S ohledem na vnitřní odpor skleněné elektrody musí mít použitý milivoltmetr vstupní odpor větší než 100 MΩ, pro vysokoohmové skleněné elektrody mnohem více. Typický rozsah měřiče pH má dolní mez 6 a horní mez 8 jednotek pH. Přístroj musí být schopen změřit změny o 0,001 pH (viz předchozí údaje o pH krve, které bývají udávány na dvě desetinná místa). Znamená to tedy, že milivoltmetr musí být schopen ukázat změnu napětí měřičeho článku o 60 µV.

Cejchování měřičů se děje pomocí roztoků o přesně známém pH. Životnost skleněné elektrody je omezená. Po určité době, která závisí na skutečné době použití, je nutno ji vyměnit.

14 Počítačem plánovaná a řízená terapie

Využití výpočetní techniky nachází své uplatnění i při náročných výkonech v terapii a chirurgii. Celá řada výkonů není mýlitelná bez nezbytných a odpovídajících výpočtů při zaměřování lézí, plánování ozařovacích polí a dávek záření, profilu koncentrací a vodivostí roztoků, řízení výkonu i terapeutických dávek laserů diatermií i pod.

V posledních několika letech je intenzivně rozvíjen i obor telechirurgie. Počítač se v mnoho případech stává měřicí ústřednou, bankou dat, archivem obrazů pořízených zobrazovacími systémy před i po chirurgickém výkonu, řídícím blokem rozsáhlých, komplexních terapeutických systémů.

Pro plánování programu ozařování, dávek i koncentrací jsou počítačové systémy označovány jako plánovací. Před vlastní aplikací dávky záření, výkonu laseru, aplikací
chemoterapie či programu dialýzy jsou využívány počítače v systémech verifikačních. Ty nedovolí aplikovat či realizovat plánovaný terapeutický či chirurgický výkon bez ověření – verifikace všech osobních dat pacienta a základních dat plánované terapie. Témeř každě téma výkladu v tomto předmětu využívá pro některý z uvedených postupů výpočetní techniku.

Řízený celotělový vysokofrekvenční ohřev tkání a zvláště pak prograrny aplikace hypertermie při ozazování tumorózních tkání není bez odpovídajícího a průběžného měření, řízení a hodnocení dosážených výsledků možný.

Radioterapie a radiochirurgie jak radionuklidy, tak urychlenými elektrony i gama zřízení celotělového vysokofrekvenční ohřevu tkání a zvláště pak programy aplikace hypertermie při ozářování tumorózních tkání není bez odpovídajícího a průběžného měření, řízení a hodnocení dosažených výsledků možný.

Při kryochirurgických výkonech je programově řízena hloubka podchlazení rychlostí přítoku i objemem chladiva. Řízení je závislé na kontrolních měřeních teplot jak v kryochirurgickém nástroji, tak ve zmrazované tkáni.

Aplikace laserů zvláště v oftalmologii při korekcí optických vad oka je opět bez výpočetní techniky nerealizovatelná. Nejen že z diagnostických dat je vypracován plán operačního výkonu, ale počítačem je řízena i činnost laseru – při abrasi rohovky.

Ventilační a anesteziologické systémy využívají výpočetní techniku nejen pro řízení a kontrolu ventilačních režimů, ale i pro nezbytné monitorování životních funkcí a jejich parametrů u pacientů. Výpočty koncentrací anestetických plynů, průtoky a ventilační objemy. Vysokofrekvenční ventilace není bez kontroly počítačem realizovatelná.

Průtok a řízení hemodialýzy je naprosto závislé na programovém vybavení, kontrolách parametrů dialyzáty i vlastností krve. Profilování – řízení koncentrace sodíku v dialyzáty během dialýzy patří již ke standardům této terapie selhávající funkce ledvin.

Programování digitálních sluchadel, procesy nastavení i implantace kochleárních neuroprotéz, zrakových neuroprotéz jsou opět podmíněny funkcí kvalitní výpočetní techniky. Řízení procesů a funkce hematologických i biochemických automatů není třeba komentovat.

15 Kompatibilita zařízení v nemocničních systémech

Slučitelnost je nutno posuzovat i z hlediska rušení jinými procesy. Samostatnou skupinou je zajištění nerušeného provozu zdravotnických systémů při jejich souběžné činnosti a zajištění nerušeného provozu jinými přístroji. V elektrotechnické oblasti je tento obor studován v disciplině elektromagnetické kompatibility. Ve specifických případech je nutno posuzovat i jiné fyzikální vlivy. Příkladem jsou například přenášená čvěření a otřesy.

15.1 KOMPATIBILITA PŘENOSU INFORMACÍ

Nejdůležitější skupiny problémů jsou předešším u elektronických přenosů informací. Požadavkem je spolupráce zařízení mechanických, elektromechanických nebo elektronických vybavených výpočetní technikou. Oblast kompatibility přenosu informací je velmi široká a vychází z velmi rozdílných typů signálů citlivých na rušení.

15.1.1 Kompatibilita identifikačních údajů

Charakteristickou oblastí je vzájemná spolupráce systémů zpracovávajících signály a unikátní data pro identifikaci pacienta nebo pro základ diagnózy. Nastupujícím trendem jsou přenousy jednorozměrných časových řad nebo funkcí v čase využívané k dalším dlouhodobému zpracování nebo archivaci. Technické problémy s tím spojené jsou jednak v vlastnostech signálů, jednak v požadavcích na bezpečný způsob spojení různých přístrojů s ohledem na možný úraz pacienta elektrickým proudem. Proto se volí mnohdy negalvanické spojení. Trendy směřují k přenosu radiovému nebo přenosům v infračervené oblasti spektra.

Slučitelnost je především řešena v datové oblasti. Hlavní oblastí zájmu je srovnání technických podmínek vzniku, přenosu a ukládání digitálních dat a signálů, především digitalizovaných obrazů z různých zařízení jako rentgeny (RTG), systémy počítačové tomografie (CT) a ultrazvukových zobrazovacích systémů (UZV) případně doplněných dopplerovským zjišťováním průtoku krve či pohybu tkání. Významně se začala rozvíjet rekonstrukce více dimenzionálních (3-D) objemových informací a zpracování s možností prezentovat různé pohledy, řezy a měření.

Další doménou vzhledem k vybavení pracovišť na nichž je nezbytná práce od lokálních propojení počítačů (LAN) po metropolitní sítě je užití počítačů v nemocničních informačních systémech (NIS). Základem úspěšného využití techniky je kompatibilita analogových metod s metodami diskrétními. Při počítačovém zpracování je vhodné uvážlivě volit programové vybavení.

15.1.2 Kompatibilita přenosu obrazové informace

Pořizování obrazu v radiodiagnostice (všechny varianty RTG zobrazení, ultrazvukové metody) je dnes ve zdravotnictví především velmi časté. Tvorba rentgenografických projekcí vede k vyspělejším zobrazovacím postupům (tomografie, CT) a složitým procesům zpracování (kontrastní látky, využití subtrakce).I při zachování kompatibility, kdy zůstanou
použití metody analogového procesu záznamu, je digitální proces (zpracování obrazů) modifikovatelnější a pružnější. Jeho vlastnosti lze především využít při:

a) Optimalizaci zobrazení - řízení jasu a kontrastu celého obrazu
b) Zpracování s rozhodovacími procesy
 - optimalizaci obrazu ve vybíraných ploškách
 - optimalizaci obrazu pro zvýraznění detailů
 - odstranění vlivů rušení
c) Skládání obrazu
 - aditivní skládání obrazu
 - subtraktivní skládání obrazu
d) Využití barevné škály při zobrazení
 - pro zvýšení vnímání detailů
 - pro odlíšení ploch s různými charakteristikami
e) Metrickém zpracování obrazu
 - rozměření při zavedení vztažného měřítka
 - zpracování rozměrových parametrů

Slučitelnost anamnézy, vyšetření a diagnostických kroků pro tvorbu celkového názadbu na pacienta je dána hlavně možností vzájemného porozumění jednotlivým fázím. Digitalizovaná forma obrazů je výhodná i pro následující archivaci, která obrazovou informaci nedegraduje. Proto je vhodný i vícestupňový postup, kdy jsou obrazy ukládány v diskové paměti postupně zpracovávány, doplněny textovými informacemi a teprve po výběru zaznamenávány na trvanlivý nosič jednorázovým zápisem.

Vzhledem k možné volbě rozlišovacích schopností u některých záznamů obrazů lze při volbě detailu nebo menším požadavku na rozlišení ve výsledném a archivováném zobrazení využít sestavení několika vyobrazení buď z chronologického sledu nebo z významových seřazení. Současně je možné při tomto procesu seřadit vhodné obrazy z různých zdrojů: RTG, UZV, prosté snímky i mikroskopické preparáty.

Na základě uvedeného rozboru vzniká koncepce realizovatelná na PC pracujících v sítích NIS. Stavebním prvkem je místo pořizování digitálního obrazu. V současnosti připadá nejčastěji v úvahu digitalizace z televizního řetězce. Vlastnosti TV řetězce limitují charakter obrazové informace. Při použití zesilovače obrazu v případě RTG snímkování, doplněném kamerou (podle požadavků na rychlost buď CCD nebo vakuovou) lze dosáhnout digitalizace v matici 800 na 600 elementů jimž je přiřazeno 7 bitové určení úrovně, tedy 128 stupňů šedi. Použitý digitalizační hardware umožňuje akumulace několika (až 256) snímků a jejich zpracováním v 16 ti bitové aritmetice plně využít 8 bitový výsledný obrazový produkt. Tato možnost je využívána u některých RTG snímků při dodatečné digitalizaci z RTG fotografického snímků a při snímání stacionárních obrazů, například z mikroskopických preparátů.

Výhodným pracovištěm pro takovýto proces digitalizace je sestava upraveného PC se dvěma monitory, která plně využije vlastnosti programové vybavení v jeho nejvýkonnější verzi. Vysoce perspektivní je možnost pracoviště přebírajícího segment obrazu ze systémů s velkou rezervou rozlišovacích schopností, jako jsou uvedená foliová pracoviště RTG a CT, případně NMR. Tato zařízení v současnosti nabízejí výstup dle zveřejněného protokolu pro digitální přenos DICOM 3. Rozhodnutí o archivaci: na kterém stupni a kde bude lokalizován soubor je vlastně stejný s pojmem „obálek“ pacientů se snímky, jejich popisy a nálezy.
Digitalizace obrazů transportovaných z UZV přístrojů nebo endoskopů v televizní normě kladě menší nároky.

Tak se stávají sítě LAN prostředím v němž na standardu PC, které tvoří jejich prvky, je umožněno reprodukovat vybrané a upravené obrazy. I když v oblasti rentgenové diagnostiky je nutno vlastní rozhodnutí o obsahu obrazu učinit před předáním do sítě, je dostupnost obrazů s komentářem rentgenologa nebo specialisty obecně vždy výhodná.

15.2 KOMPATIBILITA INFORMAČNÍCH SYSTÉMŮ

Digitalizované formy signálu, především obrazů, jsou většinou spojeny s rozvojem informačních systémů zdravotnických zařízení. Výbavení však musí plnit řadu požadavků. Jedním z podstatných požadavků na programové vybavení je možnost spolupráce s informačním systémem, který zajistí praktickou použitelnost a přiřazení obrazů ke složkám konkrétního pacienta. Tato funkce perspektivně musí být splněna i pro obrazy z různých modalit.

Nedílnou součástí rozvoje jsou možnosti ukládat ekonomicky a efektivně výsledky zpracování obrazů s případnou kompresí podle potřeby. Ta musí být bezestratová pro další zpracování. Poslední řešené otázky jsou opět kompatibilita různých systémů a problémy legislativní při změně archivace. Pro zařazení elektronických forem informací ve zdravotnictví, které postupně nahrazují analogové a případně i historické textové formy, jsou uvažovány modality a kombinace postupů zpracování takové, aby mohly být nasazovány postupně dle ekonomických možností. Sém patří především tradičně vytvářené RTG obrazy podle potřeby prohlížené, různě prosveštěné, které v digitální formě umožňují i změnu kontrastu, složité transformace zvýrazňující hledanou informaci a nevyžadují novou expozici.

Zařazení RTG obrazů digitalizovaných a přenášených v normě DICOM podporuje obrazový archivační systém a jeho normativní standard PACS. I obrazy z foliového snímkování nebo bodové převody do digitální formy musí zajistit kompatibilitu s běžnými zobrazeními na fotosnímcích i snímcích z multiformátových kamer. Postupný proces rozvoje nových metod tedy musí zajistit kompatibilitu signálu i obrazu pro výchozí situační klíčových lékařských přístrojů, přístrojů elektronických analogových i digitálních.

Archivování dat

Digitální procesy zpracování vytvářejí kompatibilní možnosti archivace. V souvislosti s některými požadavky je vhodné řešit archivaci obrazů spojených logicky s daty pacienta. V databázovém systému mohou být distribuovány na paměťový prostředek především v místě vzniku obrazu. Při požadavcích na další přenosy je lze krátkodobě uložit v místě dalšího využití.
Struktura databázového systému musí zajišťovat prostor podle velikosti dat pro krátkodobé uložení. Pro trvalou archivaci musí jej zajišťovat centrální archivační medium. Na radiodiagnostickém oddělení je vzhledem k požadovaným dobám přístupu archivačním mediem v současné době jen WORM disk.

Nedílnou součástí kompatibility metod lékařské dokumentace je archivační strategie a její ekonomická rozvaha. Ta vychází z objemu dat pro jeden RTG snímk. Lze tedy předpokládat, že na disk 1,2 GB bude uloženo zhruba 300 obrazů bez kompres a 600 komprimovaných. To při současné ceně media stlačuje cenu jednoho archivovaného, rychle dostupného snímku, na přibližně 5,- Kč. Celková ekonomie pracoviště je však ještě závislá na ceně diskové jednotky WORM a rozsahu denní činnosti.

15.3 BEZPEČNOST PROVOZU ZDRAVOTNICKÉ TECHNIKY

Zvláštní normy pro zdravotnické přístroje a jejich používání sledují především bezpečnostní hlediska. Situace je charakterizována galvanickým stykem zařízení s pacientem i v extrémních situacích na operačních sálech. Normy určují vztah hygienických předpisů v případech terapeutického využití proudů a polí. Dochází k definici přípustného ovlivnění personálu i v případě, kdy vzhledem k požadovanému terapeutickému efektu je pro pacienta stanovena hodnota jinak zakázaná.

Spolehlivost a napájení přístrojů ve zdravotnictví

Spolehlivost elektronických zařízení je závislá na spolehlivosti součástí v závislosti na provozních podmínkách. Spolehlivost celých systémů je nutno posuzovat s ohledem na důležitost funkce jednotlivých prvků pro celkový efekt nebo také s ohledem na sekundární vlivy jako je poruchovost v závislosti na teplotě.

Ochrana prostředí ve zdravotnictví

Dalším problémem je charakteristika, která může být zahrnuta do ekologie. K jednotlivým fázím souběžné činnosti je nutné definovat vnější projevy terapeutických postupů a nezbytné generované pole i rušení, charakteristické vlastnosti zdravotnického prostředí, obsluhu zdravotnickým personálem (sterilnost prostředí, výbušnost a nutnost zvýšené hygieny.) Ohled na možné poruchy a přerušení činnosti - zálohouvání funkcí i napájení.
Seznam použité literatury

[1] Beneš J. a kol.: Zdroj fokusované rázové vlny určený pro předklinické zkoušky mimotělní lithotripsie žlučových a ledvinových kamenů. Lékař a technika, 1988, č.5-6, str.121

[27] Navrátil J. a kol.: Dialýza, hemoperfúze a plasmaferéza. Naše vojsko, Praha 1987

[34] Šimek J.: Fyziologické hodnoty u člověka. Avicenum, Praha 1986
[37] Vrána M. a kol.: Elektronické přístroje pro stimulaci orgánů a tkání. SZN, Praha 1984
[38] Vrba J., Lapeš M.: Mikrovlnné aplikátory pro lékařské aplikace. ČVUT FEL, Praha 1997
[40] Zobač L.: Kryochirurgický soubor KS 06 pro Chiranu Brno. Brno, 1980
[41] Firemní dokumentace sluchadel Prisma – Siemens.
[48] Kohl A. a kol.: Navrhování základních částí přístrojů. SNTL, Praha 1973